Synthesis and Characterization of Hydrated Calcium Phosphate: Precursors for Obtaining Biocements

2014 ◽  
Vol 798-799 ◽  
pp. 443-448
Author(s):  
Priscila Ferraz Franczak ◽  
Nelson Heriberto Almeida Camargo ◽  
Pricyla Corrêa ◽  
Enori Gemelli

Calcium phosphates biocements are biomaterials that present crystallographic and mineralogical characteristics similar to human skeletal structure. This has led to the development of new calcium phosphates biomaterials for biomedical applications, especially biomaterials for repairing defects and bone reconstruction. Calcium phosphates biocements are a promising alternative in biomedical applications, for they are easy to mold, they have good wettability, hydration and hardening capacity during its application in biological means. This work aimed at the synthesis of hydrated calcium phosphates powder, through a simple reactive method, which will be the basis for the production of calcium phosphate biocimentos with self-setting reaction. Three calcium phosphates compositions were produced via CaCO3/phosphoric acid reactive method in the ratios Ca/P = 1,5; 1,6 e 1,67 molar. The presented results are associated to hydrated powder morphology and synthesis process control. Scanning Electron Microscopy (SEM) helped with the morphological characterization of the powders, the laser analysis method was used for determining particle size and the Fourier Transformed Infrared Spectroscopy (FTIR) gave support to the identification of H2O e PO43-grouping vibrational bands. The work showed that for the different powder compositions the hydrated calcium phosphate phase is formed by clustered fine particles. This demonstrated that the chosen synthesis method permits the obtention of hydrated calcium phosphates, precursors for later biocement production.

2014 ◽  
Vol 936 ◽  
pp. 712-716 ◽  
Author(s):  
Priscila Ferraz Franczak ◽  
Nelson Heriberto Almeida Camargo ◽  
Nelson Levandowski ◽  
Daiara Floriano da Silva

Calcium phosphates biocements are biomaterials that present crystallographic and mineralogical characteristics similar to human skeletal structure. This has led to the development of new calcium phosphates biomaterials for biomedical applications, especially biomaterials for repairing defects and bone reconstruction. Calcium phosphates biocements are a promising alternative in biomedical applications, for they are easy to mold, they have good wettability, hydration and hardening capacity during its application in biological environment. This work aimed at the synthesis of hydrated calcium phosphates powder, precursor to late biocements development. Three calcium phosphates compositions were produced via CaCO3/phosphoric acid reactive method in the ratios Ca/P = 1,5; 1,6 e 1,67 molar. The presented results are associated to hydrated powder morphology and synthesis process control. Field Electronic Microscope helped with the morphological characterization of the powders, Fourier Transformed Infrared Spectroscopy (FTIR) gave support to the identification of H2O e PO43- grouping vibrational bands and x-ray diffractometry (XRD) served on crystallographic characterization of hydrated calcium phosphates. The work showed that for the different powder compositions the hydrated calcium phosphate phase is formed by clustered fine particles. This demonstrated that the chosen synthesis method permits the obtaining nanoparticles of hydrated calcium phosphates, precursors for later biocement production.


2016 ◽  
Vol 881 ◽  
pp. 159-164
Author(s):  
Maicon Douglas Possamai ◽  
Nelson Heriberto Almeida Camargo ◽  
Daiara Floriano-Silva ◽  
Marli Baltazar Roesler Eckstein ◽  
Priscila Ferraz Franczak

Bone reconstruction biomaterials are topics of interest in dentistry, orthopedics, scientific, commercial. The most popular bone repairing and reconstruction biomaterials are calcium phosphates. The demand for biomaterials is associated with the chemical and crystallographic characteristics of the human bone apatite. The wet synthesis method is common in the production of nanostructured powders of hydrated calcium phosphates, providing nanoparticles with sizes less than 50nm. This study aimed to synthesize and characterize hydrated calcium phosphate powders in the molar ratio of Ca/P = 1.67. After calcination at temperature 900°C/2h, these powders provide nanostructured hydroxyapatite matrix. The characterization studies were performed with Scanning Electron Microscopy, X-rays diffraction and Infrared Spectroscopy by Fourier Transform. The results show that the synthesis method provides hydrated calcium phosphate powders formed by aggregated and agglomerated nanoparticles. The thermal treatment of hydrated calcium phosphate powder led to formation of hydroxyapatite matrix.


2007 ◽  
Vol 12 (4) ◽  
pp. 574-582 ◽  
Author(s):  
Nelson Heriberto de Almeida Camargo ◽  
O. J. Bellini ◽  
Enori Gemelli ◽  
M. Tomiyama

Nanostructured materials have been largely studied in the last few years because they have a great potential to applications in different fields like physics, chemistry, biology, mechanic and medicine. Synthesis and characterization of nanostructured materials is a subject of great interest involving science, market, politicians, government and society. The nanostructured materials are in demand in biomedical area, mainly the bioceramics composed of calcium phosphates (Ca/P), which have an excellent biocompatibility and mineralogical characteristics similar to those of bones. The aim of this work was to optimize the method of powder synthesis of nanostructured calcium phosphate and of nanocomposites composed of calcium phosphate//SiO2n, containing 5, 10 and 15% (in volume) of nanometric silica (SiO2n). The results are expressed according to the method of synthesis, mineralogical and morphological characterization, and thermal behavior for the different compositions of the nanostructured powder synthesized.


2016 ◽  
Vol 881 ◽  
pp. 165-170
Author(s):  
Priscila Ferraz Franczak ◽  
Nelson Heriberto Almeida Camargo ◽  
Daiara Floriano-Silva ◽  
Marli Baltazar Roesler Eckstein ◽  
Maicon Douglas Possamai

The calcium phosphate bioceramics are characterized by chemical and crystallographic similarity with the human skeleton. The wet synthesis method was used in the preparation of hydrated calcium phosphate nanostructured powders and biphasic compositions of calcium phosphate matrix. This study aimed the synthesis and characterization of a hydrated calcium phosphate matrix in the ratio Ca/P 1.67 molar and two biphasic compositions of hydrated calcium phosphate matrix, with 1% MgO and 5% α-Al2O3. Scanning Electron Microscopy (SEM) helped with the powders morphological characterization, X-ray diffractometry (XRD) served for crystallographic characterization of powders and Fourier Transformed Infrared Spectroscopy (FTIR) gave support to the identification of H2O, CO32- and PO43- grouping vibrational bands. The work showed that the presence of 1% MgO inside the hydrated calcium phosphate matrix provided brushite formation and the presence of 5% α-Al2O3 in the matrix provided the hydrated calcium phosphate powder.


2011 ◽  
Vol 31 (5) ◽  
pp. 906-914 ◽  
Author(s):  
A. Roguska ◽  
M. Pisarek ◽  
M. Andrzejczuk ◽  
M. Dolata ◽  
M. Lewandowska ◽  
...  

2008 ◽  
Vol 396-398 ◽  
pp. 615-618
Author(s):  
Rodrigo Brandão ◽  
Fernando Pupio ◽  
Nelson Heriberto A. Camargo ◽  
E. Gemelli

The bioceramics nanostructured have made important characteristics in biomedical applications, especially the calcium phosphate ceramics. The aim of this work is synthesis and characterization of calcium phosphate and nanocomposites powders, the method of dissolution of CaO in liquid medium, precipitation and formation of bone calcium phosphate matrix, and nanocomposites by adding the solution of phosphoric acid (H3PO4). The nanocomposites powders were synthesized using as strengthening silica gel nanometer (20nm) at concentrations of 1%, 2%, 3% and 5% by volume and subjected to heat treatment to 900°C for 2 hours, seeking obtained HA (Hydroxyapatite). Later the bone matrix of calcium phosphate and nanocomposites powders were subjected from process attrition milling for 2 hours, by way of comparison. The studies characterizations were conducted through the technique of X-ray diffraction, scanning electron microscopy (SEM) and dilatometric test.


2019 ◽  
Vol 8 (4) ◽  
pp. 711-714

Hydroxyapatite, amorphous calcium phosphates, calcium triphosphate and calcium octaphosphate are the main components present in bones and teeth. Calcium phosphates are easily synthesized, playing an important role in regenerative medicine, being able to be used as bone implants. There are different ways of synthesizing phosphates, the most commonly used being wet chemical method. The objective of this work was to study the influence of the use of ultrasound and spray drying on the synthesis of amorphous calcium phosphate. Two synthetic variants were studied. One without ultrasound application and the other with ultrasound application. The samples obtained were characterized by X-ray diffraction, FTIR spectroscopy and scanning electron microscopy. The particle size by electron microscopy and the calcium content by atomic absorption was determined. The results showed that when spray drying is applied, particle sizes of less than 261 nm are obtained in the samples synthesized without ultrasound application, being less than 59 nm in the samples synthesized with ultrasound application. The statistical analysis by ANOVA showed significant differences between the particle sizes of the samples synthesized without ultrasound application and the samples synthesized by applying ultrasound. In both cases the particles were spherical. The results obtained show that the application of ultrasound during the synthesis process decreases the particle size, increasing the surface area, which favors the spray drying process.


2006 ◽  
Vol 309-311 ◽  
pp. 195-198 ◽  
Author(s):  
Daniel O. de Lima ◽  
Marcelo Henrique Prado da Silva ◽  
Jose B. de Campos ◽  
Antonella M. Rossi ◽  
Marisa Masumi Beppu

Calcium phosphates are widely used in medicine and dentistry. However, synthesis of these substances through precipitation methods still presents problems regarding reproducibility. Alginate is a polymer extracted from brown algae, whose monomers are D-mannuronic and L-guluronic acids, and is suitable for biomedical applications. The aim of this paper is to investigate how the poly-ionic nature of alginate affects phase composition of calcium phosphate obtained through a precipitation method.


2005 ◽  
Vol 494 ◽  
pp. 537-542 ◽  
Author(s):  
M. Radić ◽  
N. Ignjatović ◽  
Zoran Nedić ◽  
M. Mitrić ◽  
Dejan Miličević ◽  
...  

In this paper we report the results on synthesis of a composite biomaterial based on biphasic calcium phosphate (BCP) and poly-(DL-lactide-co-glycolide) (DLPLG). Besides, we have investigated the influence of new synthesis method on the structure and characteristics of the composite. The synthesis of biphasic calcium phosphate from Ca(NO3)2 x 4H2O and (NH4)3 PO4 in alkali environment was performed by means of precipitation technique. Composite material BCP/DLPLG was first prepared from commercial granules using chemical methods. Powdered polymer DLPLG was then homogenized at appropriate ratio with addition of biphasic calcium phosphate into the suspension. All samples were characterized by DSC, IR, X-Ray and SEM techniques.


Sign in / Sign up

Export Citation Format

Share Document