Effect of Milling Medium on Alumina Additivated with Niobia

2014 ◽  
Vol 798-799 ◽  
pp. 677-681
Author(s):  
Willian Trindade ◽  
Marcelo Henrique Prado da Silva ◽  
Alaelson Vieira Gomes ◽  
Carlos Frederico Matos Chagas ◽  
Luis Henrique Leme Louro

Niobia has been successfully used as sintering additive to alumina in order to lower its sintering temperature. This effect can also be obtained by reducing the ceramic particle size. This work investigated the effect of the particle size on the ceramic final density of alumina with 4 wt% niobia. For that two milling media were used. The as-received powders were submitted to ball and planetary milling and then sintered at 1450°C. The planetary milling medium was more efficient in reducing particle size when compared to ball milling. However, planetary milling caused significant contamination in the niobia powder, from the alumina balls used as milling agents. It forced composition balance in order to keep the original proposed formulation. The planetary milled sintered samples showed better densification and lower grain size in comparison with ball milled ones. It could be concluded that the milling medium choice directly affected both microstructure and properties of the sintered alumina with 4wt% of niobia. .

2010 ◽  
Vol 25 (3) ◽  
pp. 471-475 ◽  
Author(s):  
Sea-Hoon Lee ◽  
Byung-Nam Kim ◽  
Hidehiko Tanaka

Al8B4C7 was used as a sintering additive for the densification of nano-SiC powder. The average grain size was approximately 70 nm after sintering SiC-12.5wt% Al8B4C7 at 1550 °C. The densification rate strongly depended on the sintering temperature and the applied pressure. The rearrangement of SiC particles occurred at the initial shrinkage, while viscous flow and liquid phase sintering became important at the middle and final stage of densification.


2018 ◽  
Vol 922 ◽  
pp. 143-148 ◽  
Author(s):  
Shao Chun Xu ◽  
Zi Jing Wang ◽  
Ya Ming Zhang ◽  
Qiang Zhi ◽  
Xu Dong Wang ◽  
...  

In this paper, clay bonded silicon carbide was prepared through pressureless sintering process with silicon carbide dusting powder as raw materials and clay as sintering additive. The effects of the ball-milling method, sintering temperature and clay contents on the density, microstructure and mechanical properties of clay bonded silicon carbide refractory were studied. The planetary ball-milling was a good method to improve the density of the green body, and the density was increased simultaneously with an increase of the clay content. The liquid phase derived from low-melting eutectic mixtures of clay could prevent the superlative oxidation of silicon carbide. The mass increment of sintered samples decreased firstly and then increased at the sintering temperature range from 1250 to 1500 °C. The open porosity of samples decreased with the clay addition at a content range from 10 to 30 wt.%. The bending strength of the samples decreased firstly and then increased with the clay addition increasing. The optimum condition for preparing clay bonded silicon carbide with silicon carbide dusting powder was sintering at 1350 °C with 20 wt.% clay, and the obtained sample with a porosity of 24% achieved the bending strength of 78±7 MPa.


2021 ◽  
Vol 484 ◽  
pp. 229252
Author(s):  
Marissa Wood ◽  
Xiaosi Gao ◽  
Rongpei Shi ◽  
Tae Wook Heo ◽  
Jose Ali Espitia ◽  
...  

2012 ◽  
Vol 538-541 ◽  
pp. 1183-1186
Author(s):  
Min Li ◽  
Lan Rong Cai ◽  
Peng Xin Liu

In this paper, effects of partial remelting treatment on microstructure and properties of ZL205A alloy were studied in detail. The results show that the grain size of ZL205A alloy decreases at different degree. The grain size increases first and then decreases with increasing of returns content. The average grain size of the primary ZL205A alloy was measured to be about 60 μm, and the good result can be got of the ZL205A alloys with the average particle size of α (Al) phase being about 33 μm after adding 20wt.% returns. The ZL205A alloy with 20 wt.% returns has a considerably high tensile strength and yield strength of 525MPa and 445 MPa, respectively, which is much higher than 501 MPa and 421 MPa of primary ZL205A alloy, meanwhile the elongation level is up to14%.


2018 ◽  
Vol 941 ◽  
pp. 1990-1995
Author(s):  
Naidu V. Seetala ◽  
Cyerra L. Prevo ◽  
Lawrence E. Matson ◽  
Thomas S. Key ◽  
Ilseok I. Park

ZrB2 and HfB2 with incorporation of SiC are being considered as structural materials for elevated temperature applications. We used high energy ball milling of micron-size powders to increase lattice distortion enhanced inter-diffusion to get uniform distribution of SiC and reduce grain growth during Spark Plasma Sintering (SPS). High-energy planetary ball milling was performed on ZrB2 or HfB2 with 20vol% SiC powders for 24 and 48 hrs. The particle size distribution and crystal micro-strain were examined using Dynamic Light Scattering Technique and x-ray diffraction (XRD), respectively. XRD spectra were analyzed using Williamson-Hall plots to estimate the crystal micro-strain. The particle size decreased, and the crystal micro-strain increased with the increasing ball milling time. The SPS consolidation was performed at 32 MPa and 2,000°C. The SEM observation showed a tremendous decrease in SiC segregation and a reduction in grain size due to high energy ball milling of the precursor powders. Flexural strength of the SPS consolidated composites were studied using Four-Point Bend Beam test, and the micro-hardness was measured using Vickers micro-indenter with 1,000 gf load. Good correlation is observed in SPS consolidated ZrB2+SiC with increased micro-strain as the ball milling time increased: grain size decreased (from 9.7 to 3.2 μm), flexural strength (from 54 to 426 MPa) and micro-hardness (from 1528 to 1952 VHN) increased. The correlation is less evident in HfB2+SiC composites, especially in micro-hardness which showed a decrease with increasing ball milling time.


2009 ◽  
Vol 6 ◽  
pp. 115-122 ◽  
Author(s):  
Dachamir Hotza ◽  
Adrian Leo ◽  
Jaka Sunarso ◽  
João C. Diniz da Costa

This work investigates the effect of nanosized Al2O3 addition on the sinterability of YSZ electrolyte. (1−x)YSZ + Al2O3 ceramics with compositions x = 0 to 0.01 were prepared by the conventional mixed oxide route from a commercial powder suspension (particle size <50 nm), and sintered at 1200 to 1500°C for 2 hours in air. Densification, phase evolution, and microstructure were characterized by SEM/EDS and XRD. An improvement in sintered density was observed for the samples with 0.2 to 0.5 mol% Al2O3, though depending on the sintering temperature. Only cubic zirconia was detected as crystalline phase, although XRD features suggested chemical interactions depending upon the amount of Al2O3. The grain size of YSZ was homogeneous and no second phase segregation was detected in the tested range of incorporated nano-Al2O3 and sintering temperatures.


2014 ◽  
Vol 1058 ◽  
pp. 44-47
Author(s):  
Bo Feng Ma ◽  
Bin Tan ◽  
Wen Bo Zhao ◽  
Xin Liang ◽  
Fa Mei Hu ◽  
...  

To save land resources by the use of low-grade natural resources to realize a high cost performance product, the technology of prepared superfine quartz sand powder via the ball milling methods were investigated. The results are shown the mean particle size of quartz sand powder is gradually become small varied with prolonging the ball milling time. Before 60 minutes, the mean particle size is slashed, however, the range of varying mean particle size is less after 60 minutes under the ball milling rotate speed for 200r/min and the charge amount for 200g/L, so the ball milling time for 60 minutes is decided.The mean grain size of quartz powders are decreased vary with an increasing the ball milling rotate speed, and the rotate speed is lower, the distribution is wider, however, the rotate speed is higher, the distribution is narrower.The mean grain size of quartz powders are 11.25μm via a roller ball milling, the mean grain size of quartz powders are 7.37μm via a planetary ball milling, and the particle size distribution of quartz powders milled via a roller ball milling is wider than that of quartz powders milled via a planetary ball milling, which shows the of quartz powders milled via a roller ball milling is not more uniform than that of quartz powders milled via a planetary ball milling, the asymmetry powder is advantage for forming the high performance building materials body.


2011 ◽  
Vol 284-286 ◽  
pp. 1349-1352
Author(s):  
Liu Shuan Yang ◽  
Xiao Wang ◽  
Yu Bin Wang ◽  
Jin Liang Huang ◽  
Fei Long Li

Using Li2O-B2O3-SiO2 (LBS) glass and LiF as a liquid phase sintering additive, the effects of it on the microstructure and properties of 16CaO-9Li2O-12Sm2O3-63TiO2(CLST)ceramics were investigated. The results indicated that the compound sintering aids of LBS glass and LiF reduced the sintering temperature of CLST from 1300 °C to 950°C. Compared with the sample doped single LBS glass, the optimum dielectric properties, Kr=81, Tanδ=0.0073 could be obtained when the CLST ceramic samples doped 3 wt% LBS glass and 0.25 wt% LiF were sintered at 950°C for 3 h.


Sign in / Sign up

Export Citation Format

Share Document