Effect of Heat Treatment on Microstructure and High Temperature Wear Properties of High Boron Medium Carbon Alloy

2015 ◽  
Vol 816 ◽  
pp. 581-585 ◽  
Author(s):  
Xiao Li Shi ◽  
Ye Hua Jiang ◽  
Zu Lai Li ◽  
Jun Tan

The microstructures and 500 °C high temperature wear properties of a high boron medium carbon alloy (HBMCA) quenched at 950 °C and then tempered at 500 °C were investigated, compared with a typical high speed steel (HSS). The results showed that the matrix structure of HBMCA after heat treatment was tempered sorbite. The content of herringbone-like and rodlike eutectic decreased. Hard phase precipitation (boron carbon compounds, e.g.M23 (C, B) 6, MB and M3B2) increased in the matrix. And the abrasion resistance of HBMCA after heat treatment at high temperature was 2.39 times of a typical HSS for roller. The wear mechanism of HSS at high temperature is a typical oxide fatigue wear mechanism, while as-quenched HBMCA is oxidation, adhesive wear mechanism.

2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


2016 ◽  
Vol 69 (10) ◽  
pp. 1801-1810 ◽  
Author(s):  
Xiaoli Shi ◽  
Yehua Jiang ◽  
Zulai Li ◽  
Jin Hu

2018 ◽  
Vol 116 (1) ◽  
pp. 108
Author(s):  
Zhang Yaguang ◽  
Hanguang Fu ◽  
Lin Jian ◽  
Wang Changan ◽  
Lei Yongping

The microstructure of Al-bearing high-boron high speed steel (AB-HSS) contains a large amount of borocarbides, which makes it have high hardness, superior wear resistance and thermal stability. But the borocarbides are coarser and continuously distribute along the grain boundary which seriously destroys the toughness of AB-HSS. In this paper, the microstructure and properties of AB-HSS were regulated by adding modifiers and quenching and tempering heat-treatment. The modifier was RE-Mg, Ti and N elements. The microstructure and properties of AB-HSS were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), the electron probe microanalysis (EPMA), hardness testing, wear testing, and impact testing. The results show that the borocarbides in as-cast AB-HSS are found in intergranular networks showing different degrees of continuity after adding different types of modifiers. The matrix of as-cast AB-HSS all is composed of ferrite, pearlite and martensite, and the borocarbides all consist of M2(B,C) and M7(C,B)3 after adding different types of modifiers. After high-temperature heat treatment, the borocarbides in the microstructure of RE-Mg modification AB-HSS appear as discontinuous networks showing signs of spheroidization and the distribution of the borocarbides is more uniform. The matrix of RE-Mg modification AB-HSS is martensite and the borocarbides consist of M2(B,C), M7(C,B)3 and M23(C,B)6. The hardness of RE-Mg modification AB-HSS reaches 61.7 HRC, and impact toughness increases by 52%, and has excellent comprehensive mechanical properties.


2016 ◽  
Vol 24 (05) ◽  
pp. 1750057 ◽  
Author(s):  
DEJUN KONG ◽  
BENGUO ZHAO

A high-velocity oxygen fuel (HVOF)-sprayed NiCrBSi coating on H13 hot work die steel was processed with laser remelting; and the surface-interface morphologies, concentrations of chemical elements, and phases of the coating were analyzed with scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), respectively. The friction-wear behaviors of the coating at high temperatures were investigated by the means of ball/plane contact. The effects of high temperature on the coefficient of friction (COF) and wear performance are discussed. The results show that the coating is dense and tightly bonded to the substrate at the interface. The average COFs at 500[Formula: see text]C, 600[Formula: see text]C, and 700[Formula: see text]C are 0.3749, 0.3609, and 0.4556, respectively. The wear mechanism is slight adhesive wear at 500[Formula: see text]C, and primarily oxidative wear and fatigue wear at 600[Formula: see text]C. The wear mechanism at 700[Formula: see text]C is oxidized wear and fatigue wear in the early stage, and mainly adhesive wear in the later stage. During high-temperature wear, an oxide film is formed on the coating surface, decreasing the wear resistance of the coating, which is primarily dependent on the compounds of Ni, Cr, B, Si, and C and the oxides of Si.


Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Zhixiong Bai ◽  
Hang Yang ◽  
Ning Su ◽  
Xiaochun Wu

The effect of different loads on the high-temperature wear behavior of 5Cr5Mo2V steel at 700 °C was investigated. Wear morphologies, oxide compositions and matrix evolution were studied. The results showed that the wear rate increased with an increased test load, and the wear mechanism transformed from abrasive-oxidative wear to adhesive-oxidative wear. The relation between a delaminated oxide layer and cracks in the matrix were investigated. The exfoliation of carbides and displacement difference between the matrix and carbides caused a crack initiation. The wear rate strongly related to carbides, and coarse M6C carbides with poor holding power led to a high wear rate. Besides, a diagram of wear characteristics under different loads was suggested in this work.


2019 ◽  
Vol 6 (10) ◽  
pp. 106541 ◽  
Author(s):  
Zheng Wei ◽  
Yuping Wu ◽  
Weihua Yang ◽  
Sheng Hong ◽  
Lei Qiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document