Increasing the Structural Integrity of Hybrid Plastics-Metal Parts by an Innovative Mechanical Interlocking Effect

2015 ◽  
Vol 825-826 ◽  
pp. 417-424 ◽  
Author(s):  
Saskia Müller ◽  
Michael Brand ◽  
Klaus Dröder ◽  
Dieter Meiners

In order to exploit full potential of hybrid materials, it is necessary to develop optimized load-dependent component designs, new manufacturing processes and joining technologies. Structural integrity concerning the interfaces between the single materials of the hybrid component poses a key factor to success. In this case, adhesion often constitutes the limiting factor for the maximum transferable load. In this investigation, a load-oriented innovative concept to increase the structural integrity of hybrid plastic-metal parts was developed. Local mechanical undercuts on the metal surface were created to generate an additional mechanical interlocking effect between the join partners. The aim is to find the best surface structure geometry to enhance mechanical bonding. Therefore, metal samples were structured by a new process and transferred to hybrid specimens by injection molding. For comparison, specimens with adhesive bonding (epoxy resin) of metal and plastic were prepared. The join partners aluminum AlCuMg1-2017 and PA6 as well as PA6GF30 were investigated. The evaluation of an increase in the structural integrity was determined using tensile tests. A significant improvement in joint strength compared with direct joining using adhesive bonding was achieved.

2021 ◽  
Author(s):  
GONZALO SEISDEDOS ◽  
BRIAN HERNANDEZ ◽  
JULIETTE DUBON ◽  
MARIANA ONTIVEROS ◽  
BENJAMIN BOESL ◽  
...  

Adhesive bonding has been shown to successfully address some of the main problems with traditional fasteners, such as the reduction of the overall weight and a more uniformly distributed stress state. However, due to the unpredictability of failure of adhesive bonds, their use is not widely accepted in the aerospace industry. Unlike traditional fastening methods, it is difficult to inspect the health of an adhesive joint once it has been cured. For adhesive bonding to be widely accepted and implemented, there must be a better understanding of the fracture mechanism of the adhesive joints, as well as a way to monitor the health of the bonds nondestructively. Therefore, in-field structural health monitoring is an important tool to ensure optimal condition of the bond is present during its lifetime. This project focuses on the advancement of a non-invasive field instrument for evaluation of the health of the adhesive joints. The tool developed is based on a B-H looper system where coils are arranged into a noise-cancellation configuration to measure the magnetic susceptibility of the samples with a lock-in amplifier. The B-H looper system can evaluate the state of damage in an adhesive bond by detecting changes in surface charge density at the molecular level of an epoxy-based adhesive doped with magneto-electric nanoparticles (MENs). Epoxy-based adhesive samples were doped with MENs and then scanned using the B-H looper system. To evaluate the health of the adhesive joint, microindentation and tensile tests were performed on MENs-doped adhesive samples to understand the relationship between mechanical damage and magnetic signal. Correlations between magnetic signatures and mechanical damage were minimally observed, thus future studies will focus on refining the procedure and damaging methodology.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 603
Author(s):  
Natalia Rońda ◽  
Krzysztof Grzelak ◽  
Marek Polański ◽  
Julita Dworecka-Wójcik

This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000492-000502 ◽  
Author(s):  
T. Bernhard ◽  
L. Gregoriades ◽  
S. Branagan ◽  
L. Stamp ◽  
E. Steinhäuser ◽  
...  

Abstract A key factor for a high electrical reliability of multilayer High Density Interconnection Printed Circuit Boards (HDI PCBs) is the thermomechanical stability of stacked microvia interconnections. With decreasing via sizes and higher numbers of interconnected layers, the structural integrity of these interconnections becomes a critical factor and is a topic of high interest in current research. The formation of nanovoids and inhibited Cu recrystallization across the interfaces are the two main indications of a weak link from the target pad to the filled via. Based on TEM/EDX measurements on a statistically relevant number of stacked and blind microvias produced in the industrial field, different types of nanovoid phenomena are revealed at the Cu/Cu/Cu junction. The types of nanovoids were categorized relating to the time of appearance (before or after thermal treatment), the affected interfaces or layers and the impact on the Cu recrystallization. The main root causes for each void type are identified and the expected impact on the thermomechanical stability of the via junction is discussed.


2019 ◽  
Vol 281 ◽  
pp. 04001
Author(s):  
Djillali Mezhoud ◽  
Jacqueline Saliba

Cracking in Reinforced Concrete (RC) structures may impact their durability and their structural integrity. Cracking is mainly influenced by stress distribution along the interface between steel and concrete. Thus, quantitative evaluation of steel-concrete bond, which is responsible of transferring load from steel bar to the surrounding matrix, and its effect on fracture properties is of major important. An experimental investigation on RC ties is reported in this paper. Tensile tests have been conducted on cubic specimens with different high adhesion reinforcement diameters. Those tests have been monitored continuously using the Acoustic Emission (AE) technique for a better evaluation of the damage process. The results show a good correlation between the load and the AE activity. AE signals with different characteristics have been observed during the different fracture stages. Parameters such as duration and energy increased with the loading level and can be used as indicators to detect the macrocracking of concrete. A parametric analysis is performed between average frequency and RA value. Ib-value of AE hits has been also investigated and decreases to 0.12 prior to the first macro crack.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1531 ◽  
Author(s):  
Guilpin ◽  
Franciere ◽  
Barton ◽  
Blacklock ◽  
Birkett

Adhesive bonding of polyethylene gas pipelines is receiving increasing attention as a replacement for traditional electrofusion welding due to its potential to produce rapid and low-cost joints with structural integrity and pressure tight sealing. In this paper a mode-dependent cohesive zone model for the simulation of adhesively bonded medium density polyethylene (MDPE) pipeline joints is directly determined by following three consecutive steps. Firstly, the bulk stress–strain response of the MDPE adherend was obtained via tensile testing to provide a multi-linear numerical approximation to simulate the plastic deformation of the material. Secondly, the mechanical responses of double cantilever beam and end-notched flexure test specimens were utilised for the direct extraction of the energy release rate and cohesive strength of the adhesive in failure mode I and II. Finally, these material properties were used as inputs to develop a finite element model using a cohesive zone model with triangular shape traction separation law. The developed model was successfully validated against experimental tensile lap-shear test results and was able to accurately predict the strength of adhesively-bonded MPDE pipeline joints with a maximum variation of <3%.


2019 ◽  
Vol 11 (5) ◽  
pp. 645-654
Author(s):  
Dionisis Semitekolos ◽  
Panagiotis Goulis ◽  
Despoina Batsouli ◽  
Elias P. Koumoulos ◽  
Loukas Zoumpoulakis ◽  
...  

Purpose The purpose of this paper is to develop modified composite materials that show improved mechanical and structural integrity. Design/methodology/approach To accomplish this goal, a novel functionalisation method of the carbon fibres (CFs) for the reinforcement of the composites surface was investigated. Through the electrografting of methacrylic acid (MAA) onto the surface of the CF, this treatment aims to selectively modify the surface of the carbon fabrics, in order to create active groups that can chemically react with the epoxy resin, under heat and pressure. By this way, better adhesion as mechanical interlocking between the resin and the reinforcement can be achieved. Findings The surface treatment was examined qualitatively by means of infrared spectroscopy, scanning electron microscopy and Raman spectroscopy. The CF reinforced polymers were manufactured via the hot-press technique and they were subsequently submitted to flexural, shear and nanoindentation test. Finally, the internal structural integrity was tested through micro-computing tomography. Originality/value Through this investigation, it will be determined if the electropolymerisation of MAA onto the CF surface enhances the mechanical and structural integrity of composite materials.


Stroke ◽  
2020 ◽  
Vol 51 (7) ◽  
pp. 1996-2001 ◽  
Author(s):  
Jing Zhao ◽  
Hang Li ◽  
David Kung ◽  
Marc Fisher ◽  
Ying Shen ◽  
...  

Background and Purpose: When the coronavirus disease 2019 (COVID-19) outbreak became paramount, medical care for other devastating diseases was negatively impacted. In this study, we investigated the impact of the COVID-19 outbreak on stroke care across China. Methods: Data from the Big Data Observatory Platform for Stroke of China consisting of 280 hospitals across China demonstrated a significant drop in the number of cases of thrombolysis and thrombectomy. We designed a survey to investigate the major changes during the COVID-19 outbreak and potential causes of these changes. The survey was distributed to the leaders of stroke centers in these 280 hospitals. Results: From the data of Big Data Observatory Platform for Stroke of China, the total number of thrombolysis and thrombectomy cases dropped 26.7% ( P <0.0001) and 25.3% ( P <0.0001), respectively, in February 2020 as compared with February 2019. We retrieved 227 valid complete datasets from the 280 stroke centers. Nearly 50% of these hospitals were designated hospitals for COVID-19. The capacity for stroke care was reduced in the majority of the hospitals. Most of the stroke centers stopped or reduced their efforts in stroke education for the public. Hospital admissions related to stroke dropped ≈40%; thrombolysis and thrombectomy cases dropped ≈25%, which is similar to the results from the Big Data Observatory Platform for Stroke of China as compared with the same period in 2019. Many factors contributed to the reduced admissions and prehospital delays; lack of stroke knowledge and proper transportation were significant limiting factors. Patients not coming to the hospital for fear of virus infection was also a likely key factor. Conclusions: The COVID-19 outbreak impacted stroke care significantly in China, including prehospital and in-hospital care, resulting in a significant drop in admissions, thrombolysis, and thrombectomy. Although many factors contributed, patients not coming to the hospital was probably the major limiting factor. Recommendations based on the data are provided.


2008 ◽  
Vol 141-143 ◽  
pp. 283-288 ◽  
Author(s):  
Manel Campillo ◽  
Maite T. Baile ◽  
Sergi Menargues ◽  
Antonio Forn

EN AC-46500 aluminium components are formed by Semi-Solid Rheocasting (SSR) in an industrial plant using a 700 tons high pressure machine. The dies wear was designed by the PLCO model of the ProCast simulation software. The components have had a good structural integrity and the mechanical properties after T6 treatment have been equivalent to that obtained by the same alloy by die cast. The present work describes the SSR forming process, the resulting microstructure as well as the optimization of the ageing heat treatment by hardness evolution. The results of the tensile tests make these clear.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Firouzeh Sabri ◽  
Jeffrey G. Marchetta ◽  
K. M. Rifat Faysal ◽  
Andrew Brock ◽  
Esra Roan

Aerogels are a unique class of materials with superior thermal and mechanical properties particularly suitable for insulating and cryogenic storage applications. It is possible to overcome geometrical restrictions imposed by the rigidity of monolithic polyurea cross-linked silica aerogels by encapsulating micrometer-sized particles in a chemically resistant thermally insulating elastomeric “sleeve.” The ultimate limiting factor for the compound material’s performance is the effect of aerogel particles on the mechanical behavior of the compound material which needs to be fully characterized. The effect of size and concentration of aerogel microparticles on the tensile behavior of aerogel impregnated RTV655 samples was explored both at room temperature and at 77 K. Aerogel microparticles were created using a step-pulse pulverizing technique resulting in particle diameters between 425 μm and 90 μm and subsequently embedded in an RTV 655 elastomeric matrix. Aerogel particle concentrations of 25, 50, and 75 wt% were subjected to tensile tests and behavior of the compound material was investigated. Room temperature and cryogenic temperature studies revealed a compound material with rupture load values dependent on (1) microparticle size and (2) microparticle concentration. Results presented show how the stress elongation behavior depends on each parameter.


Sign in / Sign up

Export Citation Format

Share Document