scholarly journals Photoluminescence Enhancement in Nanotextured Fluorescent SiC Passivated by Atomic Layer Deposited Al2O3 Films

2016 ◽  
Vol 858 ◽  
pp. 493-496
Author(s):  
Wei Fang Lu ◽  
Yi Yu Ou ◽  
Valdas Jokubavicius ◽  
Ahmed Fadil ◽  
Mikael Syväjärvi ◽  
...  

The influence of thickness of atomic layer deposited Al2O3 films on nanotextured fluorescent 6H-SiC passivation is investigated. The passivation effect on the light emission has been characterized by photoluminescence and time-resolved photoluminescence at room temperature. The results show that 20nm thickness of Al2O3 layer is favorable to observe a large photoluminescence enhancement (25.9%) and long carrier lifetime (0.86ms). This is a strong indication for an interface hydrogenation that takes place during post-thermal annealing. These result show that an Al2O3 layer could serve as passivation in fluorescent SiC based white LEDs applications.

Author(s):  
Д.В. Юрасов ◽  
Н.А. Байдакова ◽  
А.Н. Яблонский ◽  
А.В. Новиков

Light-emitting properties of Ge-on-Si(001) layers doped by Sb were studied by stationary and time-resolved photoluminescence (PL) at room temperature. It was obtained that the PL intensity of n-Ge/Si(001) structures is maximized when the doping level is close to the equilibrium solubility of Sb in Ge (~1019 cm-3) which is in accordance with the previously published data. Time-resolved studies of the direct-related PL signal have shown that both the donor density and the growth conditions of doped layer, in particular, the growth temperature influence the PL kinetics. It was obtained that the increase of doping level leads to the decrease of the characteristic carrier lifetime. Moreover, usage of low growth temperatures which is needed to form the doped n-Ge layers also results in shortening of the carrier lifetime as compared with Ge layers grown at high temperatures. It was found that rapid thermal anneal at proper conditions could partially compensate the above mentioned detrimental effects and lead to the increase of both the PL intensity and carrier lifetime.


2019 ◽  
Vol 963 ◽  
pp. 313-317
Author(s):  
Jan Beyer ◽  
Nadine Schüler ◽  
Jürgen Erlekampf ◽  
Birgit Kallinger ◽  
Patrick Berwian ◽  
...  

Temperature dependent microwave detected photoconductivity MDP and time-resolved photoluminescence TRPL were employed to investigate the carrier lifetime in CVD grown 4H-SiC epilayers of different thickness. The minority carrier lifetime may be found from both theMDP and defect PL decay at room temperature for all epilayers, whereas the near bandedge emission (NBE) decay is much faster for thin epilayers (<17 μm) due to the substrate proximity and only follows the minority carrier lifetime for thicker samples at lower excess carrier concentrations.


2009 ◽  
Vol 24 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Li-Wen Lai ◽  
Jheng-Tai Yan ◽  
Chia-Hsun Chen ◽  
Li-Ren Lou ◽  
Ching-Ting Lee

AlN codoped ZnO films were deposited on sapphire substrates at low temperature using a cosputter system under various N2/(N2 + Ar) flow ratios. To investigate the nitrogen function, the ratio of nitrogen ambient was varied during cosputtering. AlN codoped ZnO films with various crystallographic structures and bonding configurations were measured. With an adequate nitrogen atmosphere deposition condition and postannealing temperature at 450 °C, the p-type conductive behaviors of AlN codoped ZnO films were achieved due to the formation of Zn–N bonds. According to the low-temperature photoluminescence spectra, the binding energy (EA) of 0.16 eV for N acceptors can be calculated. Using time-resolved photoluminescence measurement, the carrier lifetime in AlN codoped ZnO films increases due to the reduction of oxygen vacancies caused by the occupation of adequate nitrogen atoms.


MRS Advances ◽  
2018 ◽  
Vol 3 (14) ◽  
pp. 733-739 ◽  
Author(s):  
Seyma Dadı ◽  
Yemliha Altıntas ◽  
Emre Beskazak ◽  
Evren Mutlugun

ABSTRACTWe propose and demonstrate the photoluminescence enhancement of CsPbBr3 perovskite quantum dot films in the presence of Au nanoparticles. Embedded into a polymer matrix, Au nanoparticle- quantum dot film assemble prepared by an easy spin coating method enabled the photoluminescence enhancement of perovskite quantum dot films up to 78%. The properties of the synthesized perovskite QDs and gold nanoparticles have been analysed using high resolution transmission electron microscopy, X-ray diffraction, energy dispersive X- ray spectroscopy, UV-Vis absorption spectrophotometer, steady state and time-resolved photoluminescence spectrometer.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3904
Author(s):  
Kaveendra Maduwantha ◽  
Shigeyuki Yamada ◽  
Kaveenga Rasika Koswattage ◽  
Tsutomu Konno ◽  
Takuya Hosokai

Room-temperature phosphorescent (RTP) materials have been attracting tremendous interest, owing to their unique material characteristics and potential applications for state-of-the-art optoelectronic devices. Recently, we reported the synthesis and fundamental photophysical properties of new RTP materials based on benzil, i.e., fluorinated monobenzil derivative and fluorinated and non-fluorinated bisbenzil derivative analogues [Yamada, S. et al., Beilstein J. Org. Chem. 2020, 16, 1154–1162.]. To deeply understand their RTP properties, we investigated the excited-state dynamics and photostability of the derivatives by means of time-resolved and steady-state photoluminescence spectroscopies. For these derivatives, clear RTP emissions with lifetimes on the microsecond timescale were identified. Among them, the monobenzil derivative was found to be the most efficient RTP material, showing both the longest lifetime and highest amplitude RTP emission. Time-resolved photoluminescence spectra, measured at 77 K, and density functional theory calculations revealed the existence of a second excited triplet state in the vicinity of the first excited singlet state for the monobenzil derivative, indicative of the presence of a fast intersystem crossing pathway. The correlation between the excited state dynamics, emission properties, and conformational flexibility of the three derivatives is discussed.


Sign in / Sign up

Export Citation Format

Share Document