Preparation and Characterization of Hierarchical Pore Molecular Sieve with Large Pore Size

2016 ◽  
Vol 859 ◽  
pp. 62-67
Author(s):  
Min Li ◽  
Dong Liu ◽  
Yue Lun Wang ◽  
Ya Dong Zhang ◽  
Ran Yu ◽  
...  

A series of hierarchical pore molecular sieves (HPMSs) with pore size up to 6.0 nm were prepared using triblock copolymer (P123) as mesoporous template agent and characterized by N2 adsorption-desorption. Cobalt-loaded catalysts were prepared by impregnating cobalt nitrate onto HPMSs and characterized by X-ray diffraction and scanning electron microscopy. The result indicates that mesopore size of HPMS increased along with the increment of the amount of P123. The selectivity of the catalysts for Fischer-Tropsch synthesis was evaluated in a fixed-bed reactor, and the results show that the selectivity of C12+ hydrocarbons is increased with the increment of the pore size.

Author(s):  
Bamidele V. Ayodele ◽  
Maksudur R. Khan ◽  
Chin Kui Cheng

<p>Production of CO-rich hydrogen gas from methane dry reforming was investigated over CeO<sub>2</sub>-supported Co catalyst. The catalyst was synthesized by wet impregnation and subsequently characterized by field emission scanning electron microscope (FESEM), energy dispersion X-ray spectroscopy (EDX), liquid N<sub>2</sub> adsorption-desorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) for the structure, surface and thermal properties. The catalytic activity test of the Co/CeO<sub>2</sub> was investigated between 923-1023 K under reaction conditions in a stainless steel fixed bed reactor. The composition of the products (CO<sub>2</sub> and H<sub>2</sub>) from the methane dry reforming reaction was measured by gas chromatography (GC) coupled with thermal conductivity detector (TCD). The effects of feed ratios and reaction temperatures were investigated on the catalytic activity toward product selectivity, yield, and syngas ratio. Significantly, the selectivity and yield of both H<sub>2</sub> and CO increases with feed ratio and temperature. However, the catalyst shows higher activity towards CO selectivity. The highest H<sub>2</sub> and CO selectivity of 19.56% and 20.95% respectively were obtained at 1023 K while the highest yield of 41.98% and 38.05% were recorded for H<sub>2</sub> and CO under the same condition. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 21<sup>st</sup> January 2016; Revised: 23<sup>rd</sup> February 2016; Accepted: 23<sup>rd</sup> February 2016</em></p><p><strong>How to Cite:</strong> Ayodele, B.V., Khan, M.R., Cheng, C. K. (2016). Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO<sub>2</sub> Catalyst. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysi</em>s, 11 (2): 210-219 (doi:10.9767/bcrec.11.2.552.210-219)</p><p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.552.210-219</p>


2005 ◽  
Vol 20 (10) ◽  
pp. 2682-2690 ◽  
Author(s):  
Yufang Zhu ◽  
Weihua Shen ◽  
Xiaoping Dong ◽  
Jianlin Shi

A stable mesoporous multilamellar silica vesicle (MSV) was developed with a gallery pore size of about 14.0 nm. A simulative enzyme, hemoglobin (Hb), was immobilized on this newly developed MSV and a conventional mesoporous silica material SBA-15. The structures and the immobilization of Hb on the mesoporous supports were characterized with x-ray diffraction, transmission electron microscopy, N2 adsorption-desorption isotherms, Fourier transform infrared, ultraviolet-visible spectroscopy, and so forth. MSV is a promising support for immobilizing Hb due to its large pore size and high Hb immobilization capacity (up to 522 mg/g) compared to SBA-15 (236 mg/g). Less than 5% Hb was leached from Hb/MSV at pH 6.0. The activity study indicated that the immobilized Hb retained most peroxidase activity compared to free Hb. Thermal stability of the immobilized Hb was improved by the proctetive environment of MSV and SBA-15. Such an Hb-mesoporous support with high Hb immobilization capacity, high activity, and enhanced thermal stability will be attractive for practical applications.


2013 ◽  
Vol 743-744 ◽  
pp. 449-454 ◽  
Author(s):  
Zhi Juan Gao ◽  
Wei Ren Bao ◽  
Li Ping Chang ◽  
Jian Cheng Wang

A Cu-SAPO-34/cordierite monolithic catalyst was prepared by in-situ hydrothermal method. The effects of ultrasonic treatment were mainly investigated during the preparing process. The removal of NOX was evaluated using a fixed-bed reactor. X-ray diffraction, scanning electron microscopy were used to characterize the samples showing that the crystallinity of Cu-SAPO-34 molecular sieve have increased after ultrasonic treatment. The Cu-SAPO-34/cordierite prepared by ultrasonic treatment showed higher de-NOx activity and stronger anti-aging property. NOx conversion could reach more than 80% between 440 and 560°C over the fresh Cu-SAPO-34/cordierite catalyst with ultrasonic treatment (600 W, 2 h) and the highest conversion was 86%, however, the highest conversion was only 76% over the Cu-SAPO-34/cordierite catalyst without ultrasonic treatment. After aging (treated for 15 h at 720 °C in the presence of 200 ppm SO2 and 10% vapor), NOx conversion reached more than 45% between 400 and 520 °C over the catalyst with ultrasonic treatment and the highest conversion was 57%, however, the highest conversion was only 43% over the catalyst without ultrasonic treatment. The XRD and SEM results indicated that the structure and morphology of Cu-SAPO-34/cordierite monolithic catalyst kept in good condition after aging.


2014 ◽  
Vol 968 ◽  
pp. 49-52
Author(s):  
Qin Qin Hou

A new nanocomposite, semiconducting polythiophene (PT) confined in mesoporous silica (SBA-15) was synthesized. PT was formed in the pores of SBA-15 by subsequent oxidative polymerization with FeCl3. Different techniques were used to characterize the nanocomposite formation. X-ray diffraction (XRD) and N2 adsorption/desorption analysis showed that the nanocomposite possesses mesoporous structure, and the residual pore volume of nanocomposite was significantly lower than that of pure empty SBA-15. Scan electron micrographs confirmed the presence of polythiophene inside pore channels of the host, and thermogravimetric analysis proved confinement effect in the channel system.


2017 ◽  
Vol 373 ◽  
pp. 299-302
Author(s):  
Bo Zhou ◽  
Chong Yang Li ◽  
Ning Qi ◽  
Zhi Quan Chen

Porous ZnO were synthesized with soft template method using zinc acetate Zn (CH3COO)2·2H2O as precursor and block copolymer F127 as the surfactant. Nitrogen adsorption-desorption measurements indicate that the ZnO sample contains large pores with mean diameter of about 30 nm. However, both small-angle X-ray diffraction and transmission electron microscope measurements indicate that the pore ordering is missing. Positron lifetime measurements reveal two long lifetime components in the porous ZnO. The longest lifetime τ4 (75 ns) corresponds to ortho-positronium (o-Ps) annihilation in large pores. The pore size estimated from τ4 is about 10.6 nm. This is much smaller than that estimated from Nitrogen adsorption-desorption measurements. In addition, the intensity I4 is only about 2.2%. This is probably due to the chemical quenching and/or inhibition of positronium formation induced by ZnO, which reduces o-Ps lifetime and intensity, and leads to under estimation of the pore size.


NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350050
Author(s):  
MIN GUAN ◽  
HAI-PENG BI ◽  
ZUYUAN WANG ◽  
SHAOHUA BU ◽  
LING HUANG ◽  
...  

Mesoporous silicas SBA-15 are modified with β-Cyclodextrins (β-CD) by simple grafting method. β-CD functionalized SBA-15 was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), nitrogen adsorption–desorption measurements, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Furthermore, the applicability of it is investigated through studying the adsorption properties of clenbuterol. It showed better adsorption capacities of clenbuterol than pure SBA-15. β-CD functionalized SBA-15 material has the potential applications in the treatment of clenbuterol contamination in food and environment science.


2014 ◽  
Vol 805 ◽  
pp. 678-683
Author(s):  
Ângela da Costa Nogueira ◽  
Jocielys Jovelino Rodrigues ◽  
Liliane Andrade Lima ◽  
Meiry Glaúcia Freire Rodrigues

In this study catalysts Fe/SBA-15 were prepared for Fischer-Tropsch Synthesis. SBA-15 samples were synthesized under acidic conditions using triblock copolymer Pluronic as a template and tetraethyl orthosilicate as a silica source.The molar composition was: 1.0 TEOS: 0017 P123: 8.14 HCl: 168 H2O. Fe/SBA-15 catalysts with different iron loading (15 wt. % and 20 wt. %) were prepared by wetness impregnation of relative SBA-15 with the desired amount of aqueous iron nitrate. The obtained catalyst were characterized by X ray diffraction (XDR), nitrogen adsorption-desorption and energy dispersive X-ray spectrometry (EDX). After impregnation of Fe the XRD profiles were almost unchanged and exhibited the high diffraction peaks of SBA-15 at low angles. The analysis of nitrogen adsorption-desorption was observed that the values of specific surface area decreased as the concentration of metal impregnated increased. And by the EDX analysis verified that the iron contents obtained are close to nominal levels of iron.


2021 ◽  
Vol 16 (1) ◽  
pp. 97-110
Author(s):  
Faris A. Jassim Al-Doghachi ◽  
Diyar M. A. Murad ◽  
Huda S. Al-Niaeem ◽  
Salam H. H. Al-Jaberi ◽  
Surahim Mohamad ◽  
...  

Co/Mg1−XCe3+XO (x = 0, 0.03, 0.07, 0.15; 1 wt% cobalt each) catalysts for the dry reforming of methane (DRM) reaction were prepared using the co-precipitation method with K2CO3 as precipitant. Characterization of the catalysts was achieved by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H2-TPR), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). The role of several reactant and catalyst concentrations, and reaction temperatures (700–900 °C) on the catalytic performance of the DRM reaction was measured in a tubular fixed-bed reactor under atmospheric pressure at various CH4/CO2 concentration ratios (1:1 to 2:1). Using X-ray diffraction, a surface area of 19.2 m2.g−1 was exhibited by the Co/Mg0.85Ce3+0.15O catalyst and MgO phase (average crystallite size of 61.4 nm) was detected on the surface of the catalyst. H2 temperature programmed reaction revealed a reduction of CoO particles to metallic Co0 phase. The catalytic stability of the Co/Mg0.85Ce3+0.15O catalyst was achieved for 200 h on-stream at 900 °C for the 1:1 CH4:CO2 ratio with an H2/CO ratio of 1.0 and a CH4, CO2 conversions of 75% and 86%, respectively. In the present study, the conversion of CH4 was improved (75%–84%) when conducting the experiment at a lower flow of oxygen (1.25%). Finally, the deposition of carbon on the spent catalysts was analyzed using TEM and Temperature programmed oxidation-mass spectroscopy (TPO-MS) following 200 h under an oxygen stream. Better anti-coking activity of the reduced catalyst was observed by both, TEM, and TPO-MS analysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0). 


2018 ◽  
Vol 24 (3) ◽  
pp. 161
Author(s):  
Asir Alnaama

Nanocrystalline aluminophosphate AlPO4-5 molecular sieves were synthesized by hydrothermal method (HTS). Synthesis parameters like time and temperature of crystallization were investigated. Type of template (R) and ratio of R/P2O5 were studied also. Characterization of the synthesized AlPO4-5 were done by powder X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), Fourier transform infrared (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TGA), and N2 adsorption-desorption BET analysis. XRD patterns results showed excellent crystallinity for two types of templates, di-n-propylamine (DPA) and tetrapropyl ammonium hydroxide (TPAOH) for alumminophosphate five (AFI) structure. Nano-level for particle size of 66 nm was revealed by AFM test. Good thermal stability was obtained in DSC-TGA results. Best time and temperature of crystallization of 24h and 190 O C were got. Optimum R/P2O5 for two kind of template was established.  


2019 ◽  
Vol 26 (1) ◽  
pp. 292-300 ◽  
Author(s):  
Vanja Gilja ◽  
Zvonimir Katančić ◽  
Ljerka Kratofil Krehula ◽  
Vilko Mandić ◽  
Zlata Hrnjak-Murgić

AbstractThe waste fly ash (FA) material was subjected to chemical treatment with HCl at elevated temperature for a different time to modify its porosity. Modified FA particles with highest surface area and pore volume were further used as a support for TiO2 catalyst during FA/TiO2 nanocomposite preparation. The nanocomposite photocatalysts were obtained by in situ sol–gel synthesis of titanium dioxide in the presence of FA particles. To perform accurate characterization of modified FA and FA/TiO2 nanocomposite photocatalysts, gas adsorption-desorption analysis, X-ray diffraction, scanning electron microscopy, UV/Vis and Infrared spectroscopy were used. Efficiency evaluation of the synthesized FA/TiO2 nanocomposites was performed by following the removal of Reactive Red 45 (RR45) azo dye during photocatalytic treatment under the UV-A irradiation. Photocatalysis has been carried out up to five cycles with the same catalysts to investigate their stability and the possible reuse. The FA/TiO2 photocatalyst showed very good photocatalytic activity and stability even after the fifth cycles. The obtained results show that successfully modified waste fly ash can be used as very good TiO2 support.


Sign in / Sign up

Export Citation Format

Share Document