Microstructure and Wear Resistance of Hard-Facing Weld Metal on JIS-S50C Carbon Steel in Agricultural Machine Parts

2016 ◽  
Vol 872 ◽  
pp. 55-61 ◽  
Author(s):  
Kittipong Kimapong ◽  
Pramote Poonayom ◽  
Voraya Wattanajitsiri

Hard-facing welding is one of the repairing methods for increasing hard metal on the agricultural machine part surfaces that caused by the wear mechanism. To this date, the investigation of an optimized welding process parameter that could produce high hardness and wear resistance of the hard-facing layer is still being developed and performed. This paper aims to study the effects of hard-facing welding layer on mechanical properties and microstructure of hard-facing weld metal on JIS-50C carbon steel. The summarized results are as follows: (a) an increase of hard-facing layer affected to increase the hardness of the layer, (b) the hardness of the welds showed a maximum hardness of about 750 HV at a top surface of 3rd welds layers with no-buffering layer and showed the minimum hardness of about 225 HV at a base metal, (c) microstructure investigation showed that the increase of the phase that contained higher chromium, molybdenum and manganese affected the increase of the hardness and the wear resistance of the weld metal, (d) The minimum mass loss of 0.2559 mg/m could be found when a welding current of 100A, non-buffering layer and 3 layers of hard-facing weld metal were applied, and (e) the buffering layer was able to produce a sound weld metal and might not be suited for the hard-facing welding of the medium carbon steel because it produced the dilution effect that deteriorated the mechanical properties of the weld metal.

2020 ◽  
Vol 861 ◽  
pp. 52-56
Author(s):  
Kittipong Kimapong ◽  
Voraya Wattanajitsiri ◽  
Sakchai Chantasri ◽  
Surat Triwanapong

This paper aimed to study an overlap distance (OL) of hard-faced welding bead in a tungsten inert gas (TIG) welding on the JIS-S50C carbon steel surface. Hard-faced weld metal was produced on an outside surface of the cylinder, using TIG welding with a high chromium flux-cored wire electrode. Welding process parameters were a welding current of 150–210 A and a hard-faced layer of 1–3. The experimental results were summarized as follows. An increase in welding current increased the weld width and the penetration but decreased the weld convex. It also increased the hardness and wear resistance of hard-faced weld metal. The increase of a weld overlap distance resulted in a decrease in the dilution effect in weld metals and an increase in the hardness and wear resistance. An increase in the hard-faced weld metal layer also resulted in a decrease in the dilution effect, resulting in an increase in the hardness and wear resistance.


2021 ◽  
Vol 118 (6) ◽  
pp. 606
Author(s):  
Nandish Girishbhai Soni ◽  
Akash Ganesh Mahajan ◽  
Kaustubh Ramesh Kambale ◽  
Sandeep Prabhakar Butee

Fabrication with the in-situ formation of W2C reinforced medium carbon steel (MCS) MMC’s was attempted using W or WO3 and graphite addition to steel. The P/M route comprising milling, compaction and sintering at 1050 °C and 1120 °C respectively in 90% N2 + 10% H2 atmosphere was adopted. Both SEM and BET studies revealed the particle size to be around 100, 7 and 40 µm for MCS, W and WO3, respectively. A complete conversion of tungsten into tungsten semicarbide (W2C) was noted in XRD for the tungsten additions of ∼6, 9 and 12 wt.% with stoichiometrically balanced C (graphite) addition of 0, 0.2 and 0.4 wt.%. However, WO3 + C addition (balanced as above) revealed the partial conversion of WO3 to W2C. The peaks of Fe3C were observed only for MCS + W + C samples and not for MCS + WO3 + C samples in XRD. In SEM, the WO3 phase appeared porous and partially converted, whereas, W2C phase was dense. Sintered density improved for the addition of W, whereas it monotonically reduced for WO3 addition to MCS + C samples. Higher hardness, compressive strength, and wear resistance was noted for W addition than WO3 to MCS+C samples.


1974 ◽  
Vol 7 (4) ◽  
pp. 491-492
Author(s):  
V. I. Pokhmurskii ◽  
R. G. Vagula ◽  
K. P. Tabinskii ◽  
Ya. S. Gribovskii

2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


2019 ◽  
Vol 813 ◽  
pp. 159-164
Author(s):  
Carlos Alberto Souto ◽  
Gustavo Faria Melo da Silva ◽  
Laura Angelica Ardila Rodriguez ◽  
Aline C. de Oliveira ◽  
Kátia Regina Cardoso

Coatings with high entropy alloys of the AlCoCrFeNiV system were obtained by selective laser melting on low carbon steel substrates. The effect of the variation of the Fe and V contents as well as the laser processing parameters in the development of the coating were evaluated. The coatings were obtained from the simple powder mixtures of the high purity elemental components in a planetary ball mill. The coatings were obtained by using CO2 laser with a power of 100 W, diameter of 0.16 mm, and scan speed varying from 3 to 12 mm/s. Phase constituents, microstructure and hardness were investigated by XRD, SEM, and microhardness tester, respectively. Wear resistance measurements were carried out by the micro-abrasion method using ball-cratering tests. The coatings presented good adhesion to the substrate and high hardness, of the order of 480 to 650 HV. Most homogeneous coating with nominal composition was obtained by using the higher scan speed, 12 mm/s. Vanadium addition increased hardness and gave rise to a high entropy alloy coating composed by BCC solid solutions. Ball cratering tests conducted on HEA layer showing improvement of material wear resistance, when compared to base substrate, decreasing up to 88% its wear rate, from 1.91x10-6 mm3/Nmm to 0.23x10-6 mm3/Nmm.


2018 ◽  
Vol 197 ◽  
pp. 12007 ◽  
Author(s):  
Ekak Novianto ◽  
Priyo Tri Iswanto ◽  
Mudjijana Mudjijana

Aluminum alloy 5083 H116 has an exceptional performance in extreme environments, moderately high strength, outstanding corrosion resistance in salt water and high impact strength at cryogenic temperature. In the present study, Aluminum alloy AA 5083 H116 plates were joined by tungsten inert gas (TIG) process by single and double sided welding. Welding current used was 53 A and 80 A with the addition of purging gas during welding process. The effects on micro structure and mechanical properties like surface hardness and tensile strength of the welded region were studied. The results have shown that optimum current out of the two weld current used is 53 A. Better microstructures, tensile and hardness were found in the welded joint for the weld current 53 A where the tensile obtained in the softened zone was approximately 87% than that of the base metal (BM). With increasing of TIG current, the width of PMZ increased. In addition, the doubled sided welding sequence also produced broader PMZ area.


Sign in / Sign up

Export Citation Format

Share Document