Feasibility Study of Zirconia Waste Recycling Obtained during the Machining of Single and Multiple Dental Prosthesis

2016 ◽  
Vol 881 ◽  
pp. 387-391
Author(s):  
Yankel B.F. Silva ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

Zirconia ceramic stabilized with 3% yttria (3Y - TZP) is the most used ceramic dental materials. During the machining of zirconia blocks in the laboratory to prepare the various types of prostheses, much of the material is lost in powder form, which is subsequently discarded. This study investigates the possibility to recycling of zirconium oxide powder obtained during milling of dental crowns and bridges. Uniaxial and isostatic pressed samples were prepared, sintered and compared to the commercial material. The results indicated that the isostatic pressed samples shows good physical and mechanical properties, comparable to the commercial material, demonstrating the viability to use this recycle material in the same process.

2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2019 ◽  
Vol 25 (2) ◽  
pp. 72-81 ◽  
Author(s):  
Ali N. Alobiedy ◽  
Ali H. Alhille ◽  
Ahmed R. Al-Hamaoy

The aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-containing ZrO2 micro and nanoparticles is a promising restorative material with improved mechanical properties expect wear rate losses.  


2013 ◽  
Vol 591 ◽  
pp. 150-153 ◽  
Author(s):  
Zhao Qiang Meng ◽  
Dan Yu Jiang

Mechanical properties of dental materials are increasingly studied via nanoindentation testing. Due to the excellent mechanical properties, 3-mol%-Yttria-Stabilized Tetragonal Zirconia (3Y-TZP) has become an attractive high-toughness core material for fixed dental restorations. In this paper, the mechanical properties of 3Y-TZP were studied by nanoindentation. The continuous stiffness measurement (CSM) and the single load/unload cycle test controlled by displacement and load respectively were performed with a Berkovich indenter.


Author(s):  
Vitaliy Anatol’evich Parunov ◽  
M. A Kareva ◽  
D. S Tykochinskiy ◽  
I. Yu Lebedenko

The article shows the creation of the new Russian alloy based on palladium for metal-ceramic dental prostheses "Palladini UNI puteam comprehensive analysis of the influence of alloying elements on the phase structure of the palladium alloys, physical and mechanical properties and coefficient of thermal linear expansion.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2323 ◽  
Author(s):  
Mana Alqahtani

We report for the first time on the effect of biocompatible hexagonal boron nitride (h-BN) nanopowder reinforcement with different concentrations on the structural and mechanical properties of fabricated self-cured polymethyl methacrylate (PMMA) based dental materials (GC UNIFAST III). A comparison among the structural and mechanical properties between hand and ultrasonic mixing is also presented. Fabricated specimens were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), micro indentation, and flexural strength techniques. The ultrasonic mixing method provides better sample textures of the composite as compared to hand mixing. It is found that XRD and IR intensity of the peaks increases with the increase of h-BN concentration due to nanocomposite formation. The additions of h-BN nanoparticles to the acrylic resin enhanced the hardness and the flexibility values of the composites. Independently of the mixing method used, adding h-BN nanopowder relatively increases the Vickers Hardness numbers (VH) and Flexural Strength (FS) of the unmodified materials. However, using ultrasonic mixing method combined with h-BN nanopowder increases VH numbers to 300% and FS values to 550% with respect to the unmodified sample made by hand mixing. The results obtained are very encouraging and will support future research in vivo, to confirm whether PMMA loaded with h-BN nanoparticles is an improvement compared to current dental restorative materials.


2021 ◽  
Vol 22 (1) ◽  
pp. 417
Author(s):  
Jae-Sung Kwon ◽  
Ji-Yeong Kim ◽  
Utkarsh Mangal ◽  
Ji-Young Seo ◽  
Myung-Jin Lee ◽  
...  

Poly(methyl methacralyate) (PMMA) has long been used in dentistry as a base polymer for dentures, and it is recently being used for the 3D printing of dental materials. Despite its many advantages, its susceptibility to microbial colonization remains to be overcome. In this study, the interface between 3D-printed PMMA specimens and oral salivary biofilm was studied following the addition of zwitterionic materials, 2-methacryloyloxyethyl phosphorylcholine (MPC) or sulfobetaine methacrylate (SB). A significant reduction in bacterial and biofilm adhesions was observed following the addition of MPC or SB, owing to their protein-repellent properties, and there were no significant differences between the two test materials. Although the mechanical properties of the tested materials were degraded, the statistical value of the reduction was minimal and all the properties fulfilled the requirements set by the International Standard, ISO 20795-2. Additionally, both the test materials maintained their resistance to biofilm when subjected to hydrothermal fatigue, with no further deterioration of the mechanical properties. Thus, novel 3D-printable PMMA incorporated with MPC or SB shows durable oral salivary biofilm resistance with maintenance of the physical and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document