Mechanical and Water Absorption Properties of Hybrid Kenaf/Glass Fibre Mat Reinforced Unsaturated Polyester Composites

2017 ◽  
Vol 888 ◽  
pp. 228-233 ◽  
Author(s):  
Nurshairatun Amira Rozali ◽  
Mohamad Bashree Abu Bakar ◽  
Mohamad Najmi Masri ◽  
Muhammad Azwadi Sulaiman ◽  
Mazlan Mohamed ◽  
...  

Hybrid kenaf/glass fibre mat reinforced unsaturated polyester (UPE) composites have been prepared by using simple hand lay up moulding technique. The composites with various formulations were characterized by flexural test while water absorption behaviour were investigated with immersion in distilled water at room temperature. The result shows that the hybrid composites with kenaf fibre mat at the innermost layers (glass fibre mat at the outer layers) has given the highest flexural strength and modulus. On the other hand, water absorption study shows that, the hybrid composites with glass fibre mat at the innermost layers (kenaf fibre mat at the outer layers) showed the highest water uptake and thickness swelling. Further investigations on morphological properties were also done to correlate the mechanical properties of the hybrid kenaf/glass fibre mat reinforced UPE composites.

Kenaf fibres have acquired enormous attention in recent years, owing to their economic viability and environmental acceptability. Kenaf (natural) fibres have been started to replace the glass fibre (synthetic) in mechanical, electrical applications and have been utilized in several applications of industrial engineering. The current study deals with water absorption of kenaf/glass fibre reinforced unsaturated polyester composite materials used in high voltage polymeric insulator rods. The kenaf/glass hybrid composites were based on 20%, 30% and 40%(by volume) of kenaf fibers replacement glass fibres with modified 60 vol.% unsaturated polyester resins. The composites were immersedin distilled water at room temperature, and composites resistance to water absorption in terms of the rate of water absorption was determined.A considerable difference in the properties of water absorption of the hybrid composite was found demonstrating that the water absorption effect on the characteristics of insulator rods depends on the arrangement and volume fraction of kenaf fibre of the composite used. Based on the results obtained, a slight effect of water absorption on pure glass fibre composite (control) was observed. The addition of kenaf fibre on glass fibre composite rod increased the water absorption of the composite. It was shown that glass fibres surrounding kena ffibre reduced water absorption. Despite the fact that 40 vol.% of kenaf fibre composite had the highest natural fibre content, it showed the lowest water absorption because of its arrangement on all composite diameters, and also because of being surrounded by glass fibres. All of the materials reached equilibrium and ceased to absorb water after 300 hours


2022 ◽  
Vol 30 (1) ◽  
pp. 397-412
Author(s):  
Bassam Hamid Alaseel ◽  
Mohamed Ansari Mohamed Nainar ◽  
Noor Afeefah Nordin ◽  
Zainudin Yahya ◽  
Mohd Nazim Abdul Rahim

This study investigates the effect of water absorption on the flexural strength of kenaf/ glass/unsaturated polyester (UPE) hybrid composite solid round rods used for insulating material applications. Three volume fractions of kenaf/glass fibre 20:80 (KGPE20), 30:70 (KGPE30), and 40:60 (KGPE40) with three different fibre arrangement profiles of kenaf fibres were fabricated by using the pultrusion technique and were aimed at studying the effect of kenaf fibres arrangement profile and its content in hybrid composites. The fibre/ resin volume fraction was maintained constant at 60:40. The dispersion morphologies of tested specimens were observed using the scanning electron microscope (SEM). The findings were compared with pure glass fibre-reinforced UPE (control) composite. The water absorption results showed a clear indication of how it influenced the flexural strength of the hybrid and non-hybrid composites. The least affected sample was observed in the 30KGPE composite type, wherein the kenaf fibre was concentrated at the centre of a cross-section of the composite rod. The water absorption reduced the flexural strength by 7%, 40%, 24%, and 38% of glass/UPE (control), 20KGPE, 30KGPE, and 40KGPE composites, respectively. In randomly distributed composite types, the water absorption is directly proportional to the volume fraction of kenaf fibre. At the same time, flexural properties were inversely proportional to the volume fraction of kenaf fibres. Although the influence of water absorption on flexural strength is low, the flexural strength of pultruded hybrid composites was more influenced by the arrangement of kenaf fibre in each composite type than its fibre loading.


2014 ◽  
Vol 980 ◽  
pp. 28-32
Author(s):  
Kiew Kwong Siong ◽  
Soon Kok Heng ◽  
Sinin Hamdan ◽  
Moaz Mohsin ◽  
Akshay Kakar ◽  
...  

O-MMT treated unsaturated polyester based hybrid composites were prepared using keratin fiber obtained from chicken feathers. Fibers of similar dimension were selected to fabricate composites through hand lay-up method. The preparation and dimensional stability properties of keratin fiber as reinforcements in composites is outlined in this paper. Varying O-MMT contents in nancomposites is performed to investigate the effects on the dimensional stability (water absorption and thickness swelling) of the composites. Results indicated that increasing fiber content deteriorates dimensional stability of the composites and composites. However, improvements in dimensional stability of the keratin fibercomposites were observed with O-MMT. O-MMT treatment reduces the water absorption and thickness swelling, especially at 5wt% of O-MMT concentrationat all range of fiber content. At 5wt% concentration of O-MMt, 10wt% keratin fiber content marks the lowest water absorption and thickness swelling with rate of 0.65% and 1.93%, respectively. Adopting 10wt% of keratin fiber at 5wt% of O-MMT can be utilized for application requiring high dimensional stability.


Author(s):  
EKHLAS A. OSMAN ◽  
ANATOLI VAKHGUELT ◽  
IGOR SBARSKI ◽  
SAAD A. MUTASHER

Effects of water absorption on the flexural properties of kenaf-unsaturated polyester composites and kenaf/recycled jute-unsaturated polyester composites were investigated. In the hybrid composites, the total fiber content was fixed to 20 wt%. In this 20 wt%, the addition of jute fiber varied from 0 to 75%, with increment of 25%. The result demonstrates the water absorption and the thickness swelling increased with increase in immersion time. Effects of water absorption on flexural properties of kenaf fiber composites can be reduced significantly with incorporation of recycled jute in composites formulation. The process of absorption of water was found to approach Fickian diffusion behavior for both kenaf composites and hybrid composites.


Author(s):  
Md. Jahangir Alam ◽  
Mohammad Washim Dewan ◽  
Sojib Kummer Paul ◽  
Khurshida Sharmin

Expensive and non-biodegradable synthetic fibres are commonly utilized as reinforcement in composites for better mechanical properties. The eco-friendly and low-cost properties of natural fibres are promising alternative reinforcement for composites. In this study epoxy-based glass and jute fibres reinforced hybrid composites are fabricated varying fibre stacking sequences, 1jute-1glass alternatively (j-g-j-) and 4glass-9jute-4glass (4g-9j-4g). Hybridization of jute and glass fibre results better tensile, flexural and water absorption properties than only jute fibre reinforced composites but inferior to only glass fibre reinforced composites. The 4g-9j-4g stacking sequence resulted in better mechanical and water absorption properties than j-g-j-- stacking sequence. The effect of chemical treatment and glass microfiber infusion are also investigated. Chemically treated jute fibre and 2 wt.% microfiber infused hybrid composite shows about 42% improvements in flexural strength as compared to untreated and without microfiber infused composites. However, fibre chemical treatment and microfiber do not have a positive impact on tensile strength.


2013 ◽  
Vol 421 ◽  
pp. 290-295
Author(s):  
Mohammad Taib Mohamad Nurul Azman ◽  
Abu Kassim Masitah ◽  
Ariff Jamaludin Mohd ◽  
Ismail Tayibbah

This research investigated the tensile and water absorption properties of kenaf fibre mat/polyester composites. Treatment using acetylation method has been introduced to improve the properties of product manufactured. The effects of acetylation treatment with three variations of time that were 1, 4 and 24 hours on the kenaf fibre mats were investigated. The MOE of the tensile of treated fibre mat/polyester composite for 1 hour was the highest with value 4589.61 MPa. The tensile strength of treated fibre mat/polyester composite for 4 hours was the highest with value 0.6213 MPa. For water absorption test, the results showed that fibre mat/polyester composite with treatment duration for 1 hour had the lowest water absorption that was 1.23% compared with treatment duration for 4 hours and 24 hours. For overall it can be concluded that the treatment duration of 1 hour was recommended for acetylation method when compared with 4 hours and 24 hours duration treatments. Using acetylation treatment on the kenaf fibre mat/polyester composites was showed improvement on composite and was recommended in short duration of treatment.


Author(s):  
Agung Efriyo Hadi ◽  
Tezara Cionita ◽  
Deni Fajar Fitriyana ◽  
Januar Parlaungan Siregar ◽  
Ahmed Nurye Oumer ◽  
...  

Incorporating natural fibre as reinforcement in the polymer matrix has shown a negative effect since the natural fibre is hydrophilic. The natural fibre easily absorbs water which causes an effect on the mechanical properties of the composites. The objective of this paper is to investigate the water absorption behaviour of hybrid jute-roselle woven fibre reinforced unsaturated polyester composite and the effect of water absorption in terms of tensile strength and tensile modulus. The effect of hybrid composite on the thickness swelling will be tested. The fabrication method used in this study is the hand lay-up technique to fabricate 2-layer and 3-layer composites with layering sequences of woven jute (J)/roselle (Ro) fibre. The results of the study showed that pure roselle fibres for 2 and 3-layer composites have the highest water absorption behaviour 3.86% and 5.51%, respectively, in 28 days) as well as thickness swelling effect, whereas hybrid J-Ro and J-J-Ro composites showed the least water absorption (2.65% and 3.76%, respectively) in 28 days) in both the tests. The hybridisation between jute and roselle fibres reduced water absorption behaviour and improved the fibres dimensional stability. The entire composites showed a decreasing trend for both tensile strength and tensile modulus strength after five weeks of water immersion. Jute fibre composite hybridised with roselle fibre can be used to reduce the total reduction of both tensile strength and tensile modulus throughout the whole immersion period. Moreover, the tensile testing showed that jute fibre composite hybridised with roselle fibre have produced the strongest composite with the highest tensile and modulus strength compared to other types of composites. The hybridisation of diverse fibre reinforcements aids in minimising the composite water absorption and thickness swelling, hence reducing the effect of tensile characteristics.


2017 ◽  
Vol 888 ◽  
pp. 193-197 ◽  
Author(s):  
Nurul Wahida Rusli ◽  
Mohamad Bashree Abu Bakar ◽  
Mohd Zharif Ahmad Thirmizir ◽  
Muhammad Azwadi Sulaiman ◽  
Mohamad Najmi Masri

This study focus on the preparation of kenaf fibre reinforced unsaturated polyester composite through the compressing molding technique. The composite characterizations in flexural and morphological properties. Flexural test revealed that the incorporation of multiple layers of kenaf mat into unsaturated polymer composite (UPE) resulted in the increase of flexural strength. Nevertheless, the UPE alone still showed superior flexural strength since the presence of natural filler/fibre in polymer tends to reduce strength properties. The results proved that the UPE revealed the formation of microcracks. Thus, it has been noticed that the fiber fracture, fiber debondings and holes are some of the defects, which are observed due to the application of the load on the specimen.


Sign in / Sign up

Export Citation Format

Share Document