Study on Band Gap Energy of F Doped TiO2 Nanotubes

2017 ◽  
Vol 889 ◽  
pp. 234-238
Author(s):  
Mohd Hasmizam Razali ◽  
Nur Arifah Ismail ◽  
Mahani Yusoff

Pure and F doped TiO2 nanotubes was synthesized using simple hydrothermal method. The hydrothermal was conducted using teflon-liner autoclave and maintained at 150oC for 24 hours. The characterization of synthesised product was carried out using x-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive of x-ray spectroscopy (EDX) and ultra violet – visible light diffuse reflectance spectroscopy (UV-Vis DRS) for band gap measurements. XRD patterns indicated that anatase TiO2 phase was remained after F doping suggested that fluorine was highly dispersed into TiO2 by substituted with O in the TiO2 lattice to formed TiO2-xFx solid solution. Morphology investigation using TEM found out small diameter of nanotubes structure within 8 – 10 nm of pure and F doped TiO2 nanotubes. The band gap energy (Eg) of both nanotubes samples were almost similar proposing that F doping does not modify the band gap energy.

2006 ◽  
Vol 6 (3) ◽  
pp. 845-851 ◽  
Author(s):  
Chitta Ranjan Patra ◽  
Sujata Patra ◽  
Alexandra Gabashvili ◽  
Yitzhak Mastai ◽  
Yuri Koltypin ◽  
...  

In this article, a simple microwave route was applied for the synthesis of nanoflakes and dendrite-type β-indium sulfide (In2S3) in high yield (>97%), using a homogeneous mixture of indium(III)chloride and thiourea in an ethylene glycol (EG)/polyethylene glycol (PEG400) solvent. The reaction was conducted in a simple domestic microwave oven (DMO). Powder X-ray diffraction (XRD), low resolution and high resolution transmission electron microscopy (LRTEM and HRTEM), selected area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS), were applied to investigate the crystallinity, structure, morphology, and composition of the In2S3 nano-materials. Both the as-synthesized and calcined In2S3 products were a body-centered tetragonal (bct) phase, observed by XRD and HRTEM. The length and width of the resulting nanoflakes were in the range of 70–600 nm and 4–10 nm, respectively. The optical band gap of the powder was determined by diffuse reflectance spectroscopy (DRS) and was found to be 2.44 eV. The electronic properties of the products were studied by measuring the optical absorption spectra using photo-acoustic spectroscopy. The band gap calculated by this method was found to be 2.52 eV. A possible mechanism for the formation of nanoflakes/dendrites-type In2S3 was also discussed.


Author(s):  
Anuar Kassim ◽  
Tan Wee Tee ◽  
Ho Soon Min ◽  
Shanthi Monohorn ◽  
Saravanan Nagalingam

PbSe thin films are prepared by chemical bath deposition technique over microscope glass substrates from an aqueous acidic bath containing lead nitrate and sodium selenate. The influence of bath temperature on the properties of PbSe film is investigated. The X-ray diffraction analysis showed the deposited films were polycrystalline and having the (111) orientation. The surface morphology study revealed that the grains have cubic shape crystal. The band gap energy was decreased from 2.0 to 1.3 eV as the bath temperature was increased from 40 to 80°C. The films deposited at 80°C showed good crystallinity and uniformly distributed over the surface of substrate with larger grain sizes. Therefore, the optimum bath temperature is 80°C. Keywords: Lead selenide; X-ray diffraction; Band gap energy; Chemical bath deposition; Thin films DOI: 10.3126/kuset.v6i2.4021Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.126-132


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 589 ◽  
Author(s):  
Lin ◽  
Guo ◽  
Dai ◽  
Lin ◽  
Hsu

In this work, we used the chemical vapor transport (CVT) method to grow PbI2 crystals using iodine as a self-transporting agent. The crystals’ structure, composition, and uniformity were confirmed by X-ray diffraction (XRD) and electron probe microanalysis (EPMA) measurements. We investigated the band gap energy using absorption spectroscopy measurements. Furthermore, we explored the temperature dependence of the band gap energy, which shifts from 2.346 eV at 300 K to 2.487 eV at 20 K, and extracted the temperature coefficients. A prototype photodetector with a lateral metal–semiconductor–metal (MSM) configuration was fabricated to evaluate its photoelectric properties using a photoconductivity spectrum (PC) and persistent photoconductivity (PPC) experiments. The resonance-like PC peak indicates the excitonic transition in absorption. The photoresponse ILight/IDark-1 is up to 200%.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Nguyen Thi Truc Linh ◽  
Phan Dinh Tuan ◽  
Nguyen Van Dzung

The titania/hydroxyapatite (TiO2/HAp) product was prepared by precipitating hydroxyapatite in the presence of TiO(OH)2 gel in the hydrothermal system. The characteristics of the material were determined by using the measurements such as X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), diffuse reflectance spectra (DRS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). The XPS analysis showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p1/2, 2p3/2), and O 1s levels related to hydroxyapatite phase whereas those of Ti (2p3/2, 2p1/2) levels corresponded with the characterization of titanium (IV) in TiO2. The XRD result revealed that TiO2/HAp sample had hydroxyapatite phase, but anatase or rutile phases were not found out. TEM image of TiO2/HAp product showed that the surface of the plate-shaped HAp particles had a lot of smaller particles which were considered as the compound of Ti. The experimental band gap of TiO2/HAp material calculated by the DRS measurement was 3.6 eV, while that of HAp pure was 5.3 eV and that of TiO2 pure was around 3.2 eV. The shift of the band gap energy of TiO2 in the range of 3.2–3.6 eV may be related to the shifts of Ti signals of XPS spectrum.


2013 ◽  
Vol 832 ◽  
pp. 734-738 ◽  
Author(s):  
S.K.M. Maarof ◽  
M.G.M. Zufrian ◽  
M.F. Achoi ◽  
Mohamad Rusop ◽  
Saifollah Abdullah

This paper will present on preparation and characterizations of hybrid nanoTiO2/ZnO using sol-gel spin coating techniques. The study involved of modification band-gap energy of Titanium Dioxide (TiO2) at different precursor molecular concentration of Zinc oxide (ZnO). The FESEM (Field emission scanning electron microscope) morphological characterize shows TiO2 and ZnO particle produced at nanoscale size. The compositional of both particles confirmed using EDAX (Energy Disperse Analyzer X-ray) analysis. The XRD (X-Ray diffraction) characterize measured the structural properties of anatase and rutile for TiO2 as well as zincite for ZnO. By increasing ZnO molecular concentration, the crystallite size, d were decreased until the optimum sample, ratio of 4 TiO2 : 1 ZnO, with value of 23.71 nm. For UV-VIS (Ultra-Violet/Visible Spectroscopy) measurement, we found the optical band-gap increased with increasing ZnO molecular concentration. The optical band-gap for optimum sample was 3.38 e.V represented this study has successfully improved the optical band-gap of TiO2.


2013 ◽  
Vol 772 ◽  
pp. 365-370 ◽  
Author(s):  
Mohd Hasmizam Razali ◽  
M.N. Ahmad-Fauzi ◽  
Abdul Rahman Mohamed ◽  
Srimala Sreekantan

Titanium dioxide (TiO2) nanoparticles were successfully synthesised by hydrothermal method using TiO2 microparticle powder (Merck) as precursor. TiO2 microparticles powder (~160 nm) was mixed with 10 M NaOH and treated hydrothermally at 150 °C and 2 MPa pressure in autoclave for 24 hours. After hydrothermal reaction was completed, the sample was washed, dried and heated at 500 °C for 2 hours to produce TiO2 nanoparticles. The synthesised nanoparticles were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and raman spectroscopy. UV-Vis DRS was used to determine the band gap energy. Field emissions and transmissions electron microscopy images revealed that nanoparticles obtained was about 14 nm. X-ray diffraction patterns showed that TiO2 nanoparticles were anatase phase (tetragonal). The band gap energy of TiO2 nanoparticles was determined to be 3.32 eV.


1996 ◽  
Vol 60 (402) ◽  
pp. 759-766 ◽  
Author(s):  
Laurent Van Haverbeke ◽  
Renaud Vochten ◽  
Karel Van Springel

AbstractChernikovite and meta-ankoleite were synthesized with a relatively high crystallinity and the compounds were identified by means of chemical analysis and X-ray diffraction. The infrared spectra were recorded and the bands assigned. From the luminescence spectra, the band-gap energy for both compounds was calculated as 2.35 eV, indicating that they must be considered as insulators. The dependence of the solubilities of these compounds on the acidity of the solution was studied, and the dominant ionic species were determined. The pKsp values of chernikovite and meta-ankoleite were found to be 22.73±0.24 and 24.30±0.81 respectively.


2019 ◽  
Vol 290 ◽  
pp. 323-328 ◽  
Author(s):  
Nor Fadilah Chayed ◽  
Norlida Kamarulzaman ◽  
Nurhanna Badar ◽  
Kelimah Elong

Doping of the materials with other metals or transition metals will modify the properties of the nanomaterials. In this work, MgO and Cu doped MgO which are Mg0.95Cu0.05O and Mg0.90Cu0.10O nanomaterials are synthesized using a self-propagating combustion method. The samples are annealed at 900 °C for 24 hours. The phase and purity of the synthesized samples are studied using X-Ray Diffraction (XRD) and the result revealed that the samples are pure and single phase. The morphology and crystallite size of the pure samples are examined using Field Emission Scanning Electron Microscope (FESEM). The result shows polyhedral morphology with agglomeration of crystallite and average crystallite size of the samples is between 40 to 210 nm. The band gap obtained for MgO nanostructures is 6.38 eV which is lower than bulk MgO of 7.8 eV. The presence of Cu causes the narrowing the band gap energy of Mg0.95Cu0.05O and Mg0.90Cu0.10O samples to 4.28 eV and 3.35 eV respectively.


2019 ◽  
Author(s):  
Pejman Monazzam ◽  
azadeh ebrahimian pirbazari ◽  
Behnam Fakhari Kisomi ◽  
Ziba Khodaee

In this work, we focused on improvement of rutile-type TiO2 degradation efficiency by cobalt doping and decorating on carbon nanotubes walls (CNTs) (Co-TiO2/CNTs). X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), diffuse reflectance spectroscopy (DRS), and nitrogen physisorption were used to characterize the prepared samples. The XRD results indicated after cobalt doping, we obtained rutile phase as the major phase for cobalt containing samples. The band gap energy of the synthesized samples were calculated by Kubelka-Munk equation using diffuse reflectance spectra. The surface area of the samples was obtained by BET model and average pore diameter and pore volume of the samples were extracted from desorption branch of BJH model. The effectiveness of the samples was examined through degradation of 2,4-dichlorophenol (2,4-DCP) as a model of organic pollutants under visible light. We achieved 27% and 50% visible light degradation of 2,4-DCP in the presence of pure TiO2 and Co-TiO2/CNTs after 180 min irradiation, respectively. The high visible light activity of Co-TiO2/CNTs sample can be approved that the presence of cobalt and CNTs reduce the band gap energy and sensitize TiO2 surface to visible light respectively. The mechanism for degradation of 2,4-DCP by Co-TiO2/CNTs photocatalyst under visible light is proposed.


Sign in / Sign up

Export Citation Format

Share Document