Metallographic Characterization and Fatigue Damage Initiation in Ti6Al4V Alloy Produced by Direct Metal Laser Sintering

2017 ◽  
Vol 891 ◽  
pp. 311-316 ◽  
Author(s):  
Radomila Konečná ◽  
Gianni Nicoletto ◽  
Adrián Bača ◽  
Ludvík Kunz

Direct Metal Laser Sintering (DMLS) is a complex process where a part is build-up by localized melting of gas atomized powder layers by a concentrated laser beam followed rapid solidification. The microstructure of DMLS produced material is substantially different from that of conventionally manufactured materials, although the ultimate strength is similar. However, yield strength and elongation and especially fatigue behavior may vary considerably according to the process parameters and post fabrication heat treatment because they affect structural heterogeneity, porosity content, residual stresses, and surface conditions. Fatigue tests of DMLS Ti6Al4V alloy are interpreted in the light of a thorough metallographic and fractographic investigation. The fatigue crack initiation for three different cyclic stress directions with respect to build direction is determined by fractography.

2016 ◽  
Vol 258 ◽  
pp. 522-525 ◽  
Author(s):  
Radomila Konečná ◽  
Gianni Nicoletto ◽  
Adrián Bača ◽  
Ludvík Kunz

High cycle fatigue life of Ti6Al4V alloy specimens manufactured by Direct Metal Laser Sintering (DMLS) was experimentally determined. The DMLS fabrication process was characterized by a 400 W laser power and 50 μm layer melted thickness. Post-fabrication heat treatment consisted in stress relieving for 3 h at 720 °C in vacuum with subsequent cooling in argon atmosphere. Fatigue testing of specimens oriented in three different directions with respect to the material build direction was performed with the aim to examine the influence of the layered microstructure on the fatigue behavior. Results of measurement of surface roughness, metallographic examinations of the layered material and fractographic investigation of the fatigue fracture surfaces were employed in the discussion of fatigue crack initiation in DMLS fabricated Ti6Al4V alloy.


2017 ◽  
Vol 891 ◽  
pp. 317-321 ◽  
Author(s):  
Adrián Bača ◽  
Radomila Konečná ◽  
Gianni Nicoletto

Direct Metal Laser Sintering (DMLS) is additive manufacturing (AM) process that can produce near net shape parts from metal powders such as titanium alloys. DMLS is a layer by layer additive manufacturing technique based on high power fiber laser that creates solid layers from loose powder material and joins them in an additive manner. The specific DMLS process conditions, lead to a specific and complex microstructure and to mechanical properties that show a degree of directionality. It was found that microstructural characteristics are related to the building process parameters. The aim of this work is to evaluate the fatigue performance of the Ti6Al4V alloy depending on the process parameters, building orientations and post-process heat treatment.


2011 ◽  
Vol 295-297 ◽  
pp. 2386-2389 ◽  
Author(s):  
Ren Hui Tian ◽  
Qiao Lin Ouyang ◽  
Qing Yuan Wang

In order to investigate the effect of plasma nitriding treatment on fatigue behavior of titanium alloys, very high cycle fatigue tests were carried out for Ti-6Al-4V alloy using an ultrasonic fatigue machine under load control conditions for stress ratios of R=-1 at frequency of ƒ=20KHz. Experiment results showed that plasma nitriding treatment played the principal role in the internal fatigue crack initiation. More importantly, plasma nitriding treatment had a detrimental effect on fatigue properties of the investigated Ti-6Al-4V alloy, and the fatigue strength of material after plasma nitriding treatment appeared to be significantly reduced about 17% over the untreated material.


2019 ◽  
Vol 290 ◽  
pp. 08010
Author(s):  
Karolina Karolewska ◽  
Bogdan Ligaj

The most commonly used technology among the additive manufacturing is Direct Metal Laser Sintering (DMLS). This process is based on selective laser sintering (SLS). The method gained its popularity due to the possibility of producing metal parts of any geometry, which would be difficult or impossible to obtain by the use of conventional manufacturing techniques. Materials used in the elements manufacturing process are: titanium alloys (e.g. Ti6Al4V), aluminium alloy AlSi10Mg, etc. Elements printed from Ti6Al4V titanium alloy find their application in many industries. Details produced by additive technology are often used in medicine as skeletal, and dental implants. Another example of the DMLS elements use is the aerospace industry. In this area, the additive manufacturing technology produces, i.a. parts of turbines. In addition to the aerospace and medical industries, DMLS technology is also used in motorsport for exhaust pipes or the gearbox parts. The research objects are samples for static tests. These samples were made of Ti6Al4V alloy by the DMLS method and the rolling method from a drawn rod. The aim of the paper is the mechanical properties comparative analysis of the Ti6Al4V alloy produced by the DMLS method under static loading conditions and microstructure analysis of this material.


2019 ◽  
Vol 17 ◽  
pp. 222-229
Author(s):  
Ludvík Kunz ◽  
Pavel Pokorný ◽  
Radomila Konečná ◽  
Gianni Nicoletto

2016 ◽  
Vol 3 (4) ◽  
pp. 921-924 ◽  
Author(s):  
Adrián Bača ◽  
Radomila Konečná ◽  
Gianni Nicoletto ◽  
Ludvík Kunz

1994 ◽  
Vol 364 ◽  
Author(s):  
Gang Li ◽  
Jian-Ting Guo ◽  
Zhong-Guang Wang

AbstractIn this investigation, the influence of second phase particles on high cycle fatigue behavior of Ni3Al alloy is studied. A single phase Ni3Al-B alloy and a Ni3Al-B/Zr alloy with a few second phase particles (Ni5Zr) at the grain boundaries are selected for investigation. High cycle fatigue tests at room temperature with R (minimum stress/maximum stress) 0.1 are conducted in air and at 30 Hz. The results show that the second phase particles are detrimental to high cycle fatigue resistance. It may be explained in terms of the second phase particles promoting fatigue crack initiation. The characteristics of fracture surfaces are examined by Scanning Electron Microscopy (SEM).


2013 ◽  
Vol 699 ◽  
pp. 426-431
Author(s):  
Zong Yue Bi ◽  
Lin Yun Xian

This paper establishes a model to predict the fatigue behavior of coiled tubing subjected to variable total strain conditions. The approach based on nonlinear fatigue cumulative damage rule of effective hysteresis energy dissipation, but requires additional experimental results from fatigue tests that were performed under constant strain amplitude. Cyclic plastic strain energy is measured curve area of cyclic stress-strain curves. it is proved to be quite consistent between theoretical predictions and experimentl datas.


Author(s):  
Bianca Pinheiro ◽  
Jacky Lesage ◽  
Ilson Pasqualino ◽  
Noureddine Benseddiq ◽  
Edoardo Bemporad

Steel pipes used for oil and gas exploitation undergo the action of cyclic loads that can cause their failure by fatigue. A consistent evaluation of the fatigue behavior should take into account the micromechanisms of fatigue damage initiation, which precede macroscopic cracking and macrocrack propagation. In this work, microstructural changes in terms of variations in microdeformations and residual stresses (macrostresses) are evaluated by X-ray diffraction in real time during alternating bending fatigue tests performed on samples taken from an API 5L X60 grade steel pipe. Three stages of microstructural changes are detected. It is found that their amplitudes and durations are proportional to the level of alternating stress applied. Changes in density and distribution of dislocations are observed by transmission electron microscopy combined with the technique of focused ion beam. To understand the role of the initial dislocation structure, fatigue tests on annealed samples are performed under the same test conditions. Again, three stages of changes are observed, but with an increase in microdeformations during the first stage instead of a decrease as found for as-machined samples, suggesting the influence of the initial state of the dislocation network. The results obtained are very encouraging for the consideration of microstructural evolutions in the development of an indicator of fatigue damage initiation in steel pipes.


Author(s):  
Naoto Yoshida ◽  
Masahiro Sakano ◽  
Hideyuki Konishi ◽  
Takashi Fujii

Fatigue cracking in steel girder web penetration details is so dangerous that it can break steel girders. A one-meter-long crack was detected in Yamazoe Bridge in 2006. Since a number of highway bridges with such web penetration details may exist in Japan, it is of urgent importance to understand these fatigue-strength properties. However, few fatigue tests have been reported on steel girder web penetration details. The purpose of this study is to clarify fatigue behavior of steel girder web penetration details with a slit through fatigue tests of specimens with these details. We designed and fabricated girder specimens that have steel girder web penetration details, in which cross-beam bottom flanges are connected to each top or bottom surface of a slit by welding. First, we conducted static loading tests to understand the stress distributions around web penetration details. Second, we conducted fatigue tests to examine fatigue crack initiation and propagation behavior and fatigue strength.


Sign in / Sign up

Export Citation Format

Share Document