Preparation of Polymer Nanoparticles and Application on Nitrile-Butadiene Rubber Reinforcement

2017 ◽  
Vol 900 ◽  
pp. 35-39
Author(s):  
Cheng Chien Wang ◽  
Chih Lung Chiu ◽  
Jian Sheng Shen

The different amount of hydrophilic hydroxyl group, including 3, 5, 7 and 10 wt.% copoly (styrene-co - divinyl benzene – co - 2-hydroxylethylenemethacrylate) (poly (St-co-DVB- co -HEMA) s) nanoparticles were synthesized via microemulsion polymerization in the present paper. The average size of the poly (St-co-DVB-co-HEMA) s was ca. 44 nm after zetasizer (DLS) measurement and SEM observation. The characteristic peaks at 3200 ~3600 cm-1 in FTIR was assigned at hydroxyl group of HEMA unit. The NBR/poly (St-co-DVB-co-HEMA) s composites films with 250 μm thickness were prepared simply via latex mixing and followed by spinning coating. The mechanical properties of the poly (St-co-DVB-co-HEMA) s/rubber nanocomposites, including the tensile strength, modulus and elongation, were increased with that of increasing of poly (St-co-DVB-co-HEMA) s adding. In addition, as the poly (St-co-DVB-co-HEMA) s nanoparticles carried out with constant St/HEMA molar ratio of 97:3 and the DVB content in 10 wt.%, the elongation at break that up to more than 3500% and the ultimate stress increased from 0.2 MPa to 0.6 MPa. The poly (St-co-DVB-co-HEMA) s nanoparticles prepared by emulsion polymerization could be successfully enhanced the mechanical properties of rubber latex.

Author(s):  
V. A. Sedykh ◽  
O. V. Karmanova ◽  
E. V. Koroleva

Search for additives that increase the wear resistance of rubbers is relevant. It is known that the introduction of hollow corundum microspheres (NCM) into rubber reduces the wear of rubber products. The uniform distribution of small amounts of microspheres in rubber by traditional "dry" mixing in a rubber mixer or on rollers is difficult. Microspheres were introduced into rubber at the stage of its separation from latex. The work consisted in the selection of thickeners capable of holding the NSM in rubber latex SCN-18SNT at the stage of its coagulation, and evaluation of physical and mechanical properties of rubbers in the presence of NCM. The retention capacity of thickeners of polyacrylamide (PAA), carboxymethylcellulose (CMC) and polyvinyl alcohol (PVA) was determined. Thickened latex was coagulated in the presence of microspheres with polymeric coagulant and sulfuric acid. When filling the polymer with microspheres, it is preferable to use a PAA thickener. The yield of microspheres in rubber using thickeners PAA, CMC and PVA was 71.1, 66.5 and 38.7% , respectively. The physico-mechanical characteristics of rubbers based on SKN-18SNT in the presence of microspheres introduced both as a "dry" method in rubber and at the stage of its isolation from latex are determined. The presence of microspheres in an amount of 4.4-4.7% by weight. on rubber, did not affect the hardness and elasticity of rebound rubbers. It has been confirmed that the presence of microspheres, especially those introduced from the latex rubber release stage, provides an increase in abrasion resistance. In turn, the presence of microspheres in rubber with traces of polyacrylamide provided an increase in the resistance of rubbers to tearing, the modulus at 100 and 200% elongation with a decrease in the elongation at break.


Author(s):  
Anyaporn Boonmahitthisud

Natural rubber (NR) is representative biomass polymer and the effective uses are strongly contributed to sustainable society. This chapter presents the innovative and advanced rubber nanocomposites with polystyrene-encapsulated silica nanohybrids (PS-nSiO2) subsequently used as a nanofiller for NR and NR/styrene butadiene rubber (NR/SBR). The PS-nSiO2 were prepared via ‘in situ' differential microemulsion polymerization. The core-shell nanohybrids of PS-nSiO2 were achieved with an average diameter of 40 nm using a smaller amount of surfactant, compared to microemulsion polymerization method. Moreover, the effects of the NR and NR/SBR filled with PS-nSiO2 nanohybrids on the mechanical properties, thermal stability, flammability and morphology are also discussed. The results indicated that the encapsulation of nSiO2 with PS can provide not only the well-dispersion of nanoparticles in the rubber matrix but also the synergistic properties of two components from the polymer and the inorganic nanoparticles by improving mechanical properties, thermal stability and flammability of rubber nanocomposites.


2003 ◽  
Vol 76 (2) ◽  
pp. 299-317 ◽  
Author(s):  
A. M. Shanmugharaj ◽  
Anil K. Bhowmick

Abstract Rheometric and mechanical properties, hysteresis and swelling behavior of the Styrene-Butadiene Rubber vulcanizates (SBR) filled with unmodified and novel electron beam modified surface treated dual phase fillers were investigated. Scorch time increases for these modified filler loaded vulcanizates due to introduction of quinone type oxygen on the surface. Electron beam modification of dual phase filler in the absence of trimethylol propanetriacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) significantly improves the modulus of the SBR vulcanizates, whereas the values of tensile strength and elongation at break drop. However, presence of TMPTA or silane slightly increases the modulus with significant improvement in tensile strength. This effect is more pronounced at higher loading of these modified fillers in SBR vulcanizates. These variations in modulus and tensile strength are explained by the equilibrium swelling data, Kraus plot and a new mathematical model interpreting the polymer-filler interaction. Hysteresis loss ratio of SBR vulcanizates loaded with irradiated fillers in absence and presence of TMPTA or silane increases due to highly aggregated structure of the filler.


2010 ◽  
Vol 150-151 ◽  
pp. 762-765
Author(s):  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Shao Guo Wen ◽  
Yan Shen

Attapulgite (AT)/natural rubber (NR)/ styrene-butadiene rubber (SBR) nanocomposites have been prepared after attapulgite was modified by different coupling agent. The treatment of AT caused the adhesion between AT nanorods and the nature rubber/styrene-butadiene rubber was improved, which enhanced the tensile properties of the matrix. The tensile strength of composites attained 15.6 MPa after AT was modified by 3%wt Si-69 coupling with addition of 20 phr.


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Ruogu Tang

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


Sign in / Sign up

Export Citation Format

Share Document