Revised Penetration Method Based on Evaluate High Temperature Property of SBS Modified Asphalt

2017 ◽  
Vol 902 ◽  
pp. 3-8
Author(s):  
Sen Han ◽  
Pei Sun ◽  
Ya Min Liu ◽  
Wei Li

In order to achieve the penetration method which could reflect the high temperature property of SBS modified asphalt, the paper presented the penetration test of SBS modified asphalt with different types and dosages of SBS modifier at three kinds of penetration weight and four different temperatures. Meanwhile, the high temperature performance of the SBS modified asphalt mixture was studied. It was found that penetration measured under current specification method (25oC, 100g, 5s) could not identify the difference of viscosity and high temperature property of different SBS modified asphalt. When the test conditions are revised to “penetration weight of 150 g, test temperature of 30oC, penetration time of 5s”, the penetration of different SBS modified asphalt measured by revised method could be used to evaluate the temperature susceptibility of SBS modified asphalt accurately and are closely related to the dynamic stability of mixture.

2022 ◽  
Vol 2152 (1) ◽  
pp. 012032
Author(s):  
Wen Wang ◽  
Zihao Wang ◽  
Liujie Guo

Abstract In order to better evaluate the composite modified asphalt of composite modified asphalt, this study through dynamic shear rheological (DSR) test, the three kinds of polymer modified asphalt before and after ageing: the compound modified asphalt (CCR), rubber powder modified asphalt (CR) and composite modified asphalt of SBS modified asphalt (SBS) analysis, to explore suitable for composite modified asphalt of modified asphalt evaluation index. The results show that: Compared with G*/sinδ, G*/(sinδ)9 has higher accuracy for evaluating the composite modified asphalt of polymer modified asphalt and is more sensitive to changes in phase angle. The critical temperature of anti-rutting factor TG*/sinδ9 is significantly higher than that of TG*/sinδ, especially for composite modified asphalt. This has an important impact on the PG classification in the Superpave asphalt binder specification. G*/sinδ underestimates the high temperature grade of the modified asphalt. The equivalent viscosity measured with η’ = sinδ-4.8628 G*/ω has the best correlation with the anti-rutting factor G*/(sinδ)9, and the highest correlation coefficient is 0.999, which is more suitable as a high-temperature property evaluation index of modified asphalt.


2014 ◽  
Vol 599 ◽  
pp. 282-286 ◽  
Author(s):  
Chun Gang Zhang ◽  
Yan Jun Xie ◽  
Lin Chun Meng ◽  
Qin Yong Li

This paper investigated into the application of fiber-enhanced asphalt mixture in surface layer of the large longitudinal slope pavement of Xi-Sang Highway. Asphalt mixture with and without polyester fiber were used. Focus is on resistance of deformation at high temperature and flexibility at low temperature. Fiber-enhanced asphalt mixture with dynamic stability above 7000 passes/mm indicated excellent rutting resistance. The high temperature dynamic modulus of fiber-enhanced asphalt mixture was much higher than conventional SBS modified asphalt mixture. Three-point blending test result indicated that the maximum flexural strain of fiber-enhance asphalt mixture reached 4180μm/m. It was concluded that fiber-enhanced asphalt mixture was suit to be used in surface layer of the large longitudinal slope pavement of Xi-Sang Highway.


2021 ◽  
Vol 293 ◽  
pp. 02029
Author(s):  
Tang-Baoli ◽  
Ren-yongqiang ◽  
Chen-Xiangmei ◽  
Hou-Huifang ◽  
Liang-Jianping

In order to study the high temperature performance of LM-S modified asphalt mixture and SBS modified asphalt mixture, repeated loading creep test was used to study the influence of temperature and deviatoric stress on the axial permanent deformation of the two kinds of asphalt mixture. At the same time, Permanent deformation, ε@5000, flow number FN and creep rate were select to evaluation of high temperature performance from different directions. The results show that the ε@5000 and creep rate are failed in the condition of high temperature and large deviatoric stress, so it hast widely practicable. The flow number FN is also limited by the conditions, which leads to the distortion of the flow number at lower temperature and smaller deviatoric stress so it is not easy to direct used as the evaluation index. Axial permanent deformation can reflect the permanent deformation in different cycles which is an excellent index to evaluate the high temperature performance of the two kinds of asphalt mixture, it is recommended to use axial permanent deformation to compare the LM-S modified asphalt mixture and SBS modified asphalt mixture The experimental results show that the axial permanent deformation of the LM-S modified asphalt mixture is always less than that of SBS modified asphalt mixture,it indicating that the high temperature rutting resistance of the LM-S modified asphalt mixture is better than that of SBS modified asphalt mixture.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xinquan Xu ◽  
Guilin Lu ◽  
Jun Yang ◽  
Xinhai Liu

High-modulus asphalt concrete (HMAC) is considered as an effective paving material for addressing the increasing heavy traffic and rutting problems. Therefore, one high-modulus agent was used in this study to prepare high-modulus asphalt binder with different dosages. The objective of this study is to investigate the performance and modification mechanism of high-modulus asphalt. The effects of high-modulus agent on the viscoelastic properties of asphalt with different dosages were quantified via rheological tests as compared to base binder and styrene-butadiene-styrene- (SBS-) modified asphalt. Moreover, the modification mechanism of the high-modulus agent was examined using fluorescence microscopy and infrared spectrum test. Based on rutting and dynamic modulus tests, the differences of road performances between high-modulus modified asphalt mixture and SBS-modified asphalt mixture were compared. The results demonstrate that the high-modulus agent improves the high-temperature performance and viscoelastic properties of the matrix asphalt. When the dosage increases to 6.67%, the modification effect is better than that of the SBS-modified asphalt. Furthermore, the results of the rutting test show that the high-modulus modified asphalt mixture has better resistance to deformation than the SBS-modified asphalt mixture. The dynamic modulus test further demonstrates that the high-modulus modified asphalt mixture exhibits superior performance in high-temperature range. Fluorescence microscopy shows that the high-modulus agent particles can swell in the asphalt to form polymer links that improve the viscoelastic properties of the asphalt. Based on the results of the infrared spectrum test, it can be concluded that a high-modulus agent changes the asphalt matrix via physical blending modification.


2012 ◽  
Vol 204-208 ◽  
pp. 4143-4146
Author(s):  
Zhong Guo He ◽  
Xin De Tang ◽  
Wen Jun Yin ◽  
Yi Fan Sun ◽  
Zhong Bo Liu

Montmorillonite/SBS composite modifed asphalts were prepared by mixing montmorillonite with SBS-modified asphalt, further the corresponding asphalt mixtures were obtained. The paving technical indexes of the mixture such as physical properties, moisture suscepyibility, and high temperature stability were tested, and compared with that of the corresponding SBS-modifed asphalt mixture and base asphalt mixture. The results demonstrate that the montmorillonite/SBS composite modifed asphalt mixture exhibites enhanced stability, improved flow value and moisture susceptibility, and increased high temperature stability.


2011 ◽  
Vol 97-98 ◽  
pp. 367-372 ◽  
Author(s):  
Yang Cheng Huang ◽  
Zhao Yi He

In order to solve problems such as environmental contamination, large resource consuming, and the inflammability of present asphalt mixture, a warm-mix agent was chosen and fire retardant was added to asphalt to modify its characteristics. The anti-flaming and warm-mix asphalt has been produced in the orthogonal experiment, and its road property and anti-flaming property lived up to expectation. The experiment shows that under the condition of a lower temperature (15-20°C lower than the the mix temperature), the rutting resistance of the anti-flaming and warm-mix SBS modified asphalt , but its low temperature property and water sensitivity decreased. This asphalt has excellent anti-flaming characteristic, and thus it can decrease the property loss in case of fire.


2014 ◽  
Vol 529 ◽  
pp. 256-259 ◽  
Author(s):  
Wen Tong Huang ◽  
Guo Yuan Xu

The modification mechanism and high temperature deformation law are obtained by the rutting test of the same matrix asphalt and aggregate gradation with different natural asphalt mixture. It proves that the anti-rutting performance of the asphalt mixture with Iran rock is close to that of SBS modified asphalt mixture.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 771
Author(s):  
Yu Sun ◽  
Dongpo He

The mixture of styreneic methyl copolymers (SMCs) normal temperature-modified asphalt and styrene-butadiene styrene block copolymer (SBS)-modified asphalt (SMCSBS) compound-modified asphalt was investigated in this study. The viscosity and temperature properties of compound modified asphalt (SMCSBS) were studied by Brookfield rotary viscosity test. Dynamic shear rheometer (DSR) and bending beam rheometer (BBR) were used to test SMCSBS compound modified asphalt with different SMC additions. Finally, the microstructure and physicochemical properties of SMCSBS were evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the modification mechanism of the SMCSBS was studied. The results show that the viscosity of the compound-modified asphalt added with SMC is improved, which is conducive to improving its workability. With the increase of SMC content, the high-temperature performance of the compound modified asphalt firstly increases and then decreases with the increase of SMC content. When the content of SMC is 12%, its high-temperature performance is the best. Compared with SBS-modified asphalt, the SMCSBS has better low-temperature performance, and the creep stiffness S and creep rate m of the SMC with different content are better than that of SBS. Finally, the microcosmic characteristics show that the SMC can give full play to its characteristics and can be uniformly dispersed in SBS modified asphalt. SMC is essentially a surfactant, which can reduce the viscosity and construction temperature by changing the surface tension and surface free energy of asphalt molecules. The curing agent of epoxy resin is slowly cross-linked and cured after contacting with air to form a certain strength, thus improving the road performance of the asphalt mixture.


2014 ◽  
Vol 919-921 ◽  
pp. 1079-1084 ◽  
Author(s):  
Sen Han ◽  
Dong Yu Niu ◽  
Ya Min Liu ◽  
De Chen ◽  
Deng Wu Liu

The types and contents of styrene-butadiene-styrene (SBS) modifier are two important factors of SBS modified asphalt mixtures. Nowadays, SBS are extensively utilized to modified asphalt in order to improve the performance of the flexible pavement. The objective of this study is to determine a best selection of types and contents of SBS modifier, which can improve high-temperature stability; low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture. The mixtures with four types of SBS (Linear A, Linear B, Star A, Star B) and the different contents of each type SBS including Linear SBS of 0%, 3%, 4%, 4.5% and Star SBS of 0%, 3%, 3.5%, 4%, were evaluated for the pavement performance of them under laboratory conditions. Wheel tracking test, beam bending test and freeze-thaw tensile strength test were chosen and carried out to determine high-temperature stability, low-temperature anti-cracking performance and the moisture susceptibility respectively. The laboratory testing results indicate that Star SBS show the more effective effects than Linear SBS to improve the high-temperature stability, low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture, and the optimum content of SBS can also play a key role the improvement of the pavement performance.


Sign in / Sign up

Export Citation Format

Share Document