Investigation on Effect of Nano-Fillers on Mechanical Properties of Epoxy Based Composites Using ANOVA

2017 ◽  
Vol 904 ◽  
pp. 137-141 ◽  
Author(s):  
Manjunath Shettar ◽  
Pavan Hiremath ◽  
U. Achutha Kini ◽  
Sathya Shankar Sharma

The present work aims to fabricate and characterize epoxy based composites with varying wt. % of nanoparticles as filler and to investigate and analyze the effects of nanoclay and nanocarbon with different wt. % on the epoxy resin. Different types of composites are prepared using 0, 2, 4 and 6 wt. % of fillers with rest of epoxy resin. Fillers are mixed with the resin by high speed mechanical stirrer for 2 hours. The mixture is transferred to the mould and allowed to cure. The specimens are prepared based on ASTM standard. The specimens are tested for tensile and flexural strength. Adding fillers resulted in change in the basic properties. ANOVA is applied to find the significance effect of 4 different weight percentage of fillers and different variety of fillers on the properties of composites.

2021 ◽  
Vol 9 (1) ◽  
pp. 9-18
Author(s):  
Tetian Samoilenko ◽  
Larysa Yashchenko ◽  
Natalia Yarova ◽  
Oleh Babich ◽  
Oleksandr Brovko

Hemp wood core (HWC) filled Si-containing epoxyurethane biocomposites, in which diane epoxy resin was replaced with epoxidized soybean oil (ESO), were obtained. It was shown that the tensile strength of ESO-containing polymer was higher, and the flexural strength was lower than those of original polymer. HWC was especially effective strengthening filler for modified epoxyurethanes, because in that case mechanical properties of composites were higher than those of unfilled polymer matrices. Particularly, flexural and tensile strength of unfilled epoxyurethane with maximum content of ESO were 8.1 and 6.8 MPa respectively, while in corresponding composite they reached 17.3 and 15.7 MPa.


2013 ◽  
Vol 13 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Sharmila Pradhan ◽  
Ralf Lach ◽  
Wolfgang Grellmann ◽  
Rameshwar Adhikari

The effect of different types of fillers on morphology and mechanical properties of polymer nanocomposites has been investigated using ethylene-1–octene copolymer (EOC), a polyolefin based elastomer, as matrix and various nanofillers {such as multi-walled carbon nanotubes (MWCNT), layered silicate (LS) and boehmite (OS2)}. The morphological structures were studied by scanning electron microscopy (SEM) while the mechanical properties were characterized by tensile testing and microindentation hardness measurements. It has been shown that the nature of the nanofiller may have significant influence on the mechanical properties of the samples. Among the nanocomposites studied so far, the MWCNT filled samples showed the highest reinforcing effect followed by layered silicate. The least reinforcing effect was obtained for the samples filled with boehmite nanoparticles. Nepal Journal of Science and Technology Vol. 13, No. 2 (2012) 103-108 DOI: http://dx.doi.org/10.3126/njst.v13i2.7721


2010 ◽  
Vol 447-448 ◽  
pp. 614-618 ◽  
Author(s):  
Hendra Suherman ◽  
Jaafar Sahari ◽  
Abu Bakar Sulong

This study investigates the electrical conductivity and micro hardness of synthetic and natural graphite epoxy composite. Graphite used on this study is synthetic graphite (SG) and natural graphite (NG) with particle size 44m and 30m, respectively. Different graphite concentrations (50 ~ 80 wt.%) were added into the epoxy resin. The dispersion of graphite in epoxy resin was conducted by high speed mixer through mechanical shearing mechanism, its graphite epoxy suspension was poured into the mold and compression molding was conducted for fabrication of graphite epoxy composites. Electrical conductivity was measured by the four point probe. Microscopic analyses conducted on fracture surface use scanning electron microscopic. Results reveal that non conductive epoxy polymer becomes conductor as addition of graphite. Electrical conductivity of NG higher than SG at the same weight percentage (Wt. %) of conducting filler loading. The highest loading concentration, it exhibited values 12.6 S/cm and 7 S/cm at (80 Wt. %). Hardness property of epoxy composites of both type of graphite increase continuously and reached peak at 60 wt% for NG and 70 wt % for SG, while more addition decreased it.


2013 ◽  
Vol 701 ◽  
pp. 197-201 ◽  
Author(s):  
Hendra Suherman ◽  
Jaafar Sahari ◽  
Abu Bakar Sulong

This study investigates the effect of carbon nanotubes (CNTs) as conductive fillers and epoxy resin as matrix on the electrical conductivity and hardness property. The different CNTs weight percentage (0 ~ 10 wt.%) were added into the epoxy resin. The dispersion of CNTs in epoxy resin was conducted by high speed mixer through mechanical shearing mechanism. The mixture of CNTs/epoxy was poured into the mold and compression molding was conducted for fabrication of CNTs/epoxy nanocomposites. The electrical conductivity and hardness of CNTs/epoxy nanocomposites by several of CNTs loading concentration were measured by the four point probe and dynamic ultra micro hardness tester. Agglomeration of CNTs in epoxy matrix was observed on fractured surface by scanning electron microscopic. Non conductive epoxy polymer becomes conductor as addition of CNTs. Electrical conductivity of CNTs/epoxy nanocomposites were increased with increasing of CNTs loading concentration. Hardness property of CNTs/epoxy nanocomposites ware reached the highest value at 5 wt.%, and then it was decreased.


2014 ◽  
Vol 905 ◽  
pp. 230-234
Author(s):  
Jun Lei Tian ◽  
Yan Ke Yang ◽  
Yi Ping Hu ◽  
Jian Qiang Cheng

Ha Tai railway passenger dedicated line is a national key project of the eleventh five-year plan. Its different from other construction of high-speed railway because there is many frozen soil over the place. The requirement of the subgrade material is higher.We proposed a idea that gradred broken stone mixed with cement and fine powder applied in the project.The compressive strength,splitting tensile strength and flexural strength were studied and analyzed through laboratory test.And regression analysis between compressive strength and flexural strength was made .According to the regression analysis,a power exponent function between flexural strength and compressive strength was got.Based on this,the corresponding relationship table was deduced,which can be used in practical projects.


2021 ◽  
Vol 56 (5) ◽  
pp. 179-185
Author(s):  
Omar A. Amin ◽  
S. A. Hassan ◽  
M. A. Sadek ◽  
M. A. Radwan ◽  
Hany A. Elazab

Epoxy resins are thermoset polymers that consist of epoxide groups in their molecular structure. It shows many attractive characteristics like strong adhesion, excellent mechanical strength, low shrinkage, excellent insulator, excellent chemical stability for acidic and basic environments, and microbial resistance due to the presence of hydroxyl groups and ether bonds and its three-dimensional structure. Many of these characteristics can be modified by adding strong bindings in the polymeric chain to give more improved characteristics. This research aims to prepare a composite material using epoxy resin and different types of fillers to achieve resistance to high kinetic energy impact. Experimental work is focused on preparing cured epoxy resin samples by using diglycidyl ether of bisphenol A (DGEBA) resin with tertiary amine as a hardener. In order to obtain different samples with different properties, we add different types of fillers, then mechanical tests are used to measure the mechanical properties of the samples. The results have proved that fiberglass is the best filler added to epoxy resins to improve its mechanical properties.


2017 ◽  
Vol 13 (10) ◽  
pp. 6558-6562
Author(s):  
A. Athijayamani ◽  
A.Sujin Jose ◽  
K. Ramanathan ◽  
S. Sidhardhan

In this study, Wood Dust (WD)/Phenol Formaldehyde (PF) and Coir Pith (CP)/PF composites were hybridized with the Prosopis Juliflora Fiber (PJF) to obtain the hybrid composites. Composites were prepared by hand moulding technique. The weight percentage of particles and fibers are fixed in the ratio of 1:1. Mechanical properties such as tensile, flexural and impact strengths were evaluated as a function of the particle and fiber loadings. The results show that the properties of both the WD and CP composites obviously improved by the addition of the PJF. The improvement in WD/PF composites was obviously higher than the CP/PF composites for all loadings. The WD/PJF/PF hybrid composites exhibited better tensile (strength of 48.9 MPA and modulus of 1262.1 MPa, respectively), flexural (strength of 55.4 MPa and modulus of 1344.3 MPa, respectively), and impact properties (1.32 KJ/m2). 


2019 ◽  
Vol 27 (1(133)) ◽  
pp. 37-44
Author(s):  
Marcin Barburski ◽  
Mariusz Urbaniak ◽  
Sanjeeb Kumar Samal

In this article, the mechanical properties of biaxial and triaxial woven aramid fabric and respective reinforced composites were investigated. Both fabrics had the same mass/m2. The first part of the experimental investigation was focused on the mechanical properties of different non-laminated aramid fabrics (biaxial and triaxial). The second part was concerned with the mechanical properties of composites made of a different combination of layers of fabric reinforced with an epoxy resin matrix in the order of biaxial+biaxial, trixial+triaxial and biaxial+triaxial. The composites were tested for tensile strength, flexural strength, strain and Young’s and flexural modulus. It can be seen from the results that the density and direction of the yarns are the most important parameters for determination of the strength of the fabric reinforced composite. The biaxial composite clearly showed better tensile strength, while the bi-tri axial order showed good flexural strength compared to the other composite combinations. These fabric reinforced composites have suitable applications in the areas of medical, protection and in the automotive industries.


Author(s):  
Yuanxin Zhou ◽  
Farhana Pervin ◽  
Jamese Hamilton ◽  
Shaik Jeelani

In the present investigation, a high intensity ultrasonic liquid processor was used to obtain a homogeneous molecular mixture of epoxy resin and K-10 MMT clay. The clay were infused into the part A of SC-15 (Diglycidylether of Bisphenol A) through sonic cavitations and then mixed with part B of SC-15 (cycloaliphatic amine hardener) using a high speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using high vacuum. Flexural tests were performed on unfilled, 1wt. %, 2wt. %, 3 wt. % and 4 wt.% clay filled SC-15 epoxy to identify the loading effect on mechanical properties of the composites. The flexural test results indicate that 2.0 wt% loading of clay in epoxy resin showed the highest improvement in strength as compared to the neat systems. After that, the nanophased matrix with 2 wt.% clay is then utilized in a Vacuum Assisted Resin Transfer Molding (VARTM) set up with satin weave carbon preforms to fabricate laminated composites. The resulting structural composites have been tested under flexural and tensile loads to evaluate mechanical properties. 13.5% improvement in flexural strength and 5.8% improvement in tensile strength were observed in carbon/epoxy nanocomposite. TGA and DMA tests were also conducted to observe the thermal stability of the structural composite.


2019 ◽  
Vol 969 ◽  
pp. 122-127
Author(s):  
B.N. Anjan ◽  
G.V. Preetham Kumar

Zinc aluminum based matrix composites reinforced with SiC and Al2O3 particles have significant applications in the automobile field. Stir casting method followed by squeeze process was used for fabrication. ZA27 composites reinforced with SiC and Al2O3 particles (20-50µm) in various weight percentage (wt%) ranges from 0-10 in a step of 5 each was fabricated. OM, SEM and EDS analysis of microstructures obtained for matrix alloy and reinforced composites were performed in order to know the effect of varying wt% on physical and mechanical properties of composites. Squeeze casting technique shows better features such as fine microstructure as a result of low porosity and good bonding between matrix and reinforcement. Addition of reinforcements decreased the densities of matrix alloy. SiC reinforced composites showed better results as compared with Al2O3 reinforced ones. Hardness and ultimate tensile strength value of 10 wt% reinforced composites showed improved results.


Sign in / Sign up

Export Citation Format

Share Document