scholarly journals Comparison of Mechanical Properties of Biaxial and Triaxial Fabric and Composites Reinforced by Them

2019 ◽  
Vol 27 (1(133)) ◽  
pp. 37-44
Author(s):  
Marcin Barburski ◽  
Mariusz Urbaniak ◽  
Sanjeeb Kumar Samal

In this article, the mechanical properties of biaxial and triaxial woven aramid fabric and respective reinforced composites were investigated. Both fabrics had the same mass/m2. The first part of the experimental investigation was focused on the mechanical properties of different non-laminated aramid fabrics (biaxial and triaxial). The second part was concerned with the mechanical properties of composites made of a different combination of layers of fabric reinforced with an epoxy resin matrix in the order of biaxial+biaxial, trixial+triaxial and biaxial+triaxial. The composites were tested for tensile strength, flexural strength, strain and Young’s and flexural modulus. It can be seen from the results that the density and direction of the yarns are the most important parameters for determination of the strength of the fabric reinforced composite. The biaxial composite clearly showed better tensile strength, while the bi-tri axial order showed good flexural strength compared to the other composite combinations. These fabric reinforced composites have suitable applications in the areas of medical, protection and in the automotive industries.

2021 ◽  
Vol 32 (2) ◽  
pp. 87-104
Author(s):  
Pui-Voon Yap ◽  
Ming-Yeng Chan ◽  
Seong-Chun Koay

This research work highlights the mechanical properties of multi-material by fused deposition modelling (FDM). The specimens for tensile and flexural test have been printed using polycarbonate (PC) material at different combinations of printing parameters. The effects of varied printing speed, infill density and nozzle diameter on the mechanical properties of specimens have been investigated. Multi-material specimens were fabricated with acrylonitrile butadiene styrene (ABS) as the base material and PC as the reinforced material at the optimum printing parameter combination. The specimens were then subjected to mechanical testing to observe their tensile strength, Young’s modulus, percentage elongation, flexural strength and flexural modulus. The outcome of replacing half of ABS with PC to create a multi-material part has been examined. As demonstrated by the results, the optimum combination of printing parameters is 60 mm/s printing speed, 15% infill density and 0.8 mm nozzle diameter. The combination of ABS and PC materials as reinforcing material has improved the tensile strength (by 38.46%), Young’s modulus (by 23.40%), flexural strength (by 23.90%) and flexural modulus (by 37.33%) while reducing the ductility by 14.31% as compared to pure ABS. The results have been supported by data and graphs of the analysed specimens.


1995 ◽  
Vol 4 (3) ◽  
pp. 096369359500400 ◽  
Author(s):  
Hiroyuki Hamada ◽  
Asami Nakai ◽  
Akihiro Fujita ◽  
Miyako Inoda

In this paper, welt knitted fabric reinforced composites were fabricated and its tensile properties were measured. Changing knitted structure from plain knit to welt knit caused changing mechanical properties, particularly isotropic tensile strength could be obtained. The fracture mode of welt knitted fabric reinforced composite was similar that of plain knitted fabric reinforced composite.


2011 ◽  
Vol 217-218 ◽  
pp. 347-352 ◽  
Author(s):  
Chun Xia He ◽  
Jun Jun Liu ◽  
Pan Fang Xue ◽  
Hong Yan Gu

The influence of the rice husks powder (RHP) content and its particle size distribution on the composite’s tensile strength, fracturing elongation ratio, flexural strength and flexural elastic modulus has been investigated. Respective water absorption and thermal properties of PP composites incorporated with different proportion of RHP have also been analyzed. The microstructure of fractured surfaces was further observed in scanning electron microscopy (SEM). The results showed that the composites with RHP of 245 μm have higher mechanical properties. The tensile strength and fracturing elongation ratio decrease with the increase of RHP content, and reach peak values in 30% RHP content. Water absorption and volume expansion ratio of the composite increase with the increasing of RHP content. Flexural strength and flexural modulus decrease after water absorption. When PHR content is low, the RHP particles are well distributed and the interface of RHP and PP is smooth. When PHR content is higher, the RHP particles tend to agglomerate, leading to poorer interface and lower mechanical properties, the composite failed with brittle fracture.


2013 ◽  
Vol 830 ◽  
pp. 172-175
Author(s):  
Cheng Zhi Chuai ◽  
Zhi Zhang

Ethylene glycol (EG) and polyethylene glycol (PEG) were added as plasticizers to improve the processing performance of cellulose acetate (CA). The CA with 30% plasticizers were melted by HAAKE at 200 °C. The effects of EG and PEG (degree of polymerization in 200-800) on rheological properties and mechanical properties of CA were investigated. The results show that the plasticizing time, equilibrium torque and melt viscosity of the plasticizing system increase with the increase of PEG molecular weight, while the processing performance decreased. The tensile strength of the system decrease as the PEG molecular weight increased. The plasticizing system which contents 30% PEG-200(degree of polymerization is 200) shows the maximum elongation at break. The minimum values appeared in both flexural strength and flexural modulus in the CA/PEG-200 system.


2021 ◽  
Vol 9 (1) ◽  
pp. 9-18
Author(s):  
Tetian Samoilenko ◽  
Larysa Yashchenko ◽  
Natalia Yarova ◽  
Oleh Babich ◽  
Oleksandr Brovko

Hemp wood core (HWC) filled Si-containing epoxyurethane biocomposites, in which diane epoxy resin was replaced with epoxidized soybean oil (ESO), were obtained. It was shown that the tensile strength of ESO-containing polymer was higher, and the flexural strength was lower than those of original polymer. HWC was especially effective strengthening filler for modified epoxyurethanes, because in that case mechanical properties of composites were higher than those of unfilled polymer matrices. Particularly, flexural and tensile strength of unfilled epoxyurethane with maximum content of ESO were 8.1 and 6.8 MPa respectively, while in corresponding composite they reached 17.3 and 15.7 MPa.


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1914-1939
Author(s):  
R. Nurul Fazita ◽  
Nurnadia Johary ◽  
H. P. S. Abdul Khalil ◽  
Najieha Norazli ◽  
A. Azniwati ◽  
...  

Reinforcement with natural fibres is a common method to improve impact properties of poly(lactic acid) (PLA). In this study, composites made from PLA and bamboo particles were melt-compounded in a twin-screw extruder and formed by compression moulding. Tensile, flexural, and impact tests were conducted. Particle size (A), particle loading (B), screw speed (C), and die temperature (D) were varied at three levels. Tensile strength and modulus, flexural strength and modulus, and impact strength were the response variables. The experiment design was based on Taguchi’s (L9) orthogonal array. Through variance analysis, the particle loading was found to be the dominant factor influencing the mechanical properties, followed by die temperature. The optimum parameters were validated with a confirmation test. The results showed a noticeable improvement of impact properties compared to neat PLA by 55%, without compromising tensile and flexural properties. Flexural strength, flexural modulus, and tensile modulus of the composites were greater than that of pure PLA. However, only tensile strength was reduced by about 28% compared to pure PLA. Importantly, the DOE method with maximizing the desirability properties was found to be an effective systematic approach to identify an optimal parameter setting of the extrusion moulding process.


2016 ◽  
Vol 30 (3) ◽  
pp. 341-357 ◽  
Author(s):  
Qin Tian ◽  
Shuhao Qin ◽  
Fuzhong Wu ◽  
Huixin Jin ◽  
Ming Yang ◽  
...  

Polypropylene (PP)/ethylene acrylic acid (EAA)/maleic anhybride-grafted PP (PP- g-MA)/organoclay nanocomposites were prepared using the melt mixing technique, and PP- g-MA and EAA were employed as the compatibilizers. The sodium montmorillonite (MMT) were pretreated with high-speed airflow pulverization method and then grafted using γ-glycidoxypropyltrimethoxysilane, followed by modification using trihexyltetradecylphosphonium chloride cation with supercritical carbon dioxide as the reaction medium (the obtained product was abbreviated as OGMMT). The modification of MMT was characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy. The effect of organoclay content on microstructure and mechanical properties of PP/EAA/PP- g-MA/OGMMT nanocomposites was investigated by XRD, transmission electron microscopy, dynamic mechanical analysis, tensile strength, notched impact strength, flexural strength, and flexural modulus. The results show that the OGMMT has a high weight loss, a large d-spacing increment, and exfoliation predomination structure. The addition of compatibilizers benefited the formation of exfoliated structure and the dispersion of OGMMT in PP matrix, and hence, enhanced the storage modulus ( G′) below the glass transition temperature ( Tg), storage modulus ( G″), Tg, tensile strength, flexural strength, and flexural modulus of the nanocomposites. Furthermore, with the increasing OGMMT content, the nanocomposites exhibited very inconsiderable alteration in the clay dispersion level and enhanced G′ below the Tg, G″, tensile strength, flexural strength, and flexural modulus of the nanocomposites, whereas the Tg was invariant. As a whole, the introduction of compatibilizers and OGMMT led to the reduction of notched impact strength, which also nearly linearly decreased with increasing clay content.


2018 ◽  
Vol 153 ◽  
pp. 01006 ◽  
Author(s):  
Suhas Yeshwant Nayak ◽  
Srinivas Shenoy Heckadka ◽  
Nishank Minil Amin ◽  
Ramakrishna Vikas Sadanand ◽  
Linto George Thomas

Hybridization of synthetic and natural fibres as reinforcement makes the polymer composites environmental friendly and sustainable when compared to synthetic fibres based polymer composites. In this study chopped strand mat/pineapple leaf fibres were hybridized. Four laminates with six layers each, with different stack sequence (GGGGGG, GPPPPG, PGGGGP and PPPPPP) were fabricated using hand layup technique while maintaining a fibre to matrix ratio of 30:70 by weight with polyester resin as matrix. Mechanical properties such as tensile and flexural strength were determined and morphology of fractured specimens was studied. Maximum tensile strength of 180 MPa was obtained for the laminate with six layers of chopped strand mat followed by hybrid laminate with four layers of chopped strand mat at the centre (120 MPa). Tensile strength of hybrid laminate with four layers of pineapple leaf fibres at the centre was in third position at 86 MPa. Least tensile strength of 65 MPa was obtained for the laminate with six layers of pineapple leaf fibres. Similar trend was observed in case of flexural behaviour of the laminates with maximum flexural strength of 255 MPa and minimum flexural strength 107 MPa. Scanning electron microscopy of the fractured specimen reinforced with chopped strand mat only, indicated, fibre pull out, matrix cracking and lack of matrix adhesion to fibres. In case of hybrid composite (GPPPPG and PGGGGP) delamination was observed to be prominent due to improper wetting of the pineapple leaf fibres with the matrix. More significant delamination led to lesser strength in case of pineapple fibres reinforced composites even though the fibre pull out was relatively less.


2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040008
Author(s):  
Yeng-Fong Shih ◽  
Venkata Krishna Kotharangannagari ◽  
Ruo-Mei Chen

In this study, recycled coffee gunny (RCG) was used to reinforce high density polyethylene (HDPE). Maleic anhydride grafted polyethylene (MAPE) was added as a compatibilizer. Moreover, the RCG was chemically treated to enhance the compatibility between fiber and HDPE matrix. A series of RCG reinforced composites were prepared and the effects of MAPE and chemical modification of RCG on the mechanical and thermal properties of HDPE were investigated. The results of thermal and mechanical properties of composites revealed that the increments of heat deflection temperature, tensile strength, and impact strength of HDPE were 16[Formula: see text]C, 19.64% and 43.63% by the addition of modified coffee gunny, respectively. It reveals that the HDPE was reinforced with the coffee gunny, and thus can effectively reuse the discarded resources.


2014 ◽  
Vol 910 ◽  
pp. 153-156
Author(s):  
Ching Wen Lou ◽  
Jo Mei Liao ◽  
Zheng Lan Lin ◽  
Jia Horng Lin

This study uses carbon fibers (CF) to reinforce polylactic acid (PLA) matrices to form CF/PLA biocomposites. Tensile test, flexural test, and impact test are performed on biocomposites to evaluate their mechanical properties. The results of tests show that an increment of the CF content results in an increase in tensile strength, flexural strength, flexural modulus, and impact strength. The combination of 15 wt% CF provides the resulting biocomposites with a 72 % increase in tensile strength, a 322 % increase in flexural modulus, and a 96 % increase in impact strength.


Sign in / Sign up

Export Citation Format

Share Document