Effect of Fluorine-Containing Additive on the Electrochemical Properties of Silicon Anode for Lithium-Ion Batteries

2019 ◽  
Vol 944 ◽  
pp. 699-704 ◽  
Author(s):  
Jing Wang ◽  
Xiao Hang Yang ◽  
Yue Feng Su ◽  
Shi Chen ◽  
Feng Wu

Silicon anode is a promising candidate as an alternative to the conventional graphitic anode in lithium-ion batteries. In this work, silicon anode is modified by NH4F using a facile method in air. The concentration of NH4F on the electrochemical performance is systematically checked. The 5wt%NH4F-modified silicon anode exhibits enhanced cycle and rate performances, the first discharge specific capacity is 3958 mAh·g-1 with 86.45% as the coulombic efficiency at 0.4A·g-1. The capacity can maintain at 703.3 mAh·g-1 after 50 cycles, exhibiting a much better cycle stability than pristine silicon anode (329.9 mAh·g-1 after 50 cycles). SEM images confirm that NH4F can alleviate the volume expansion of silicon since LiF can be generated at the surface which is beneficial to the stability of solid-electrolyte interphase (SEI).

2019 ◽  
Vol 43 (9) ◽  
pp. 3907-3912
Author(s):  
Xuan Gao ◽  
Xiaochen Sun ◽  
Zhigang Jiang ◽  
Qiliang Wang ◽  
Nan Gao ◽  
...  

In this work, we report a new type of anode consisting of mixed detonation nanodiamonds (DNDs) and titanium dioxide (TiO2) hollow nanospheres (HNSs) for improving the specific capacity and cycle stability of lithium ion batteries (LIBs).


2016 ◽  
Vol 18 (12) ◽  
pp. 8643-8653 ◽  
Author(s):  
Yukihiro Okuno ◽  
Keisuke Ushirogata ◽  
Keitaro Sodeyama ◽  
Yoshitaka Tateyama

Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs.


2008 ◽  
Vol 47-50 ◽  
pp. 621-624 ◽  
Author(s):  
X.H. Huang ◽  
J.P. Tu ◽  
X.H. Xia ◽  
X.L. Wang

Nickel foam-supported NiO spheres were prepared by an electrodeposition technique using nickel foam as the substrate, and then the Ag nanoparticles were loaded on the NiO spheres. SEM images showed that these NiO/Ag spheres are porous with a size of about 2 µm. As an anode for lithium-ion batteries, the nickel foam-supported NiO/Ag spheres exhibit higher coulombic efficiency, weaker polarization, and better cycling performance as compared to the NiO spheres. The improvements of these electrochemical properties are attributed to the Ag nanoparticles, which enhanced the electrical conduction of the electrode.


2022 ◽  
Vol 905 ◽  
pp. 135-141
Author(s):  
Bao Juan Yang ◽  
Rui Xia ◽  
Su Bin Jiang ◽  
Mei Zhen Gao

Due to high theoretical specific capacity and abundant reserves, tin selenide-based materials have received tremendous attentions in the fields of lithium-ion batteries. Nevertheless, the huge volume changes during insertion/de-intercalation processes deteriorate the Coulombic Efficiency greatly. In order to solve it, the researchers have made great efforts by means of controlling nanoparticles granularity, carbon coating, ion doping et al. In this study, SnSe/Cu2SnSe3 heterojunction nanocomposites were synthesized by solvo-thermal method. The resulting SnSe/Cu2SnSe3 is a three-dimensional flower-like hierarchical nanostructure composed of nanoscale thin lamellae of a thickness of 8-12 nm. The unique nanostructure could shorten the diffusion path of lithium ions and expedite charge transfer, and therefore enhance the reaction kinetics. Compared with SnSe, the initial Coulombic efficiency of SnSe/Cu2SnSe3 is raised from 59% to 90% as the anode material of lithium-ion batteries.


2015 ◽  
Vol 3 (21) ◽  
pp. 11253-11260 ◽  
Author(s):  
Gaoqi Shao ◽  
Lin Gan ◽  
Ying Ma ◽  
Huiqiao Li ◽  
Tianyou Zhai

Carbon-coated nanosized Li3VO4 was successfully obtained by combination of ball milling and CVD techniques. The thin and full coating layers of carbon can greatly decrease the amount of conductive additive in the electrode and enhance the first coulombic efficiency, specific capacity and rate performances of Li3VO4.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Manisha Phadatare ◽  
Rohan Patil ◽  
Nicklas Blomquist ◽  
Sven Forsberg ◽  
Jonas Örtegren ◽  
...  

Abstract To increase the energy storage density of lithium-ion batteries, silicon anodes have been explored due to their high capacity. One of the main challenges for silicon anodes are large volume variations during the lithiation processes. Recently, several high-performance schemes have been demonstrated with increased life cycles utilizing nanomaterials such as nanoparticles, nanowires, and thin films. However, a method that allows the large-scale production of silicon anodes remains to be demonstrated. Herein, we address this question by suggesting new scalable nanomaterial-based anodes. Si nanoparticles were grown on nanographite flakes by aerogel fabrication route from Si powder and nanographite mixture using polyvinyl alcohol (PVA). This silicon-nanographite aerogel electrode has stable specific capacity even at high current rates and exhibit good cyclic stability. The specific capacity is 455 mAh g−1 for 200th cycles with a coulombic efficiency of 97% at a current density 100 mA g−1.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongsheng Zhou ◽  
Yingchun Zhu ◽  
Bingshe Xu ◽  
Xueji Zhang ◽  
Khalid A. Al-Ghanim ◽  
...  

Abstract Lithium-ion batteries (LIBs) are considered new generation of large-scale energy-storage devices. However, LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability. In this work, we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes (NBNTs) for LIBs. The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAh g−1 at a current density of 0.1 A g−1, and was able to maintain a stable reversible discharge capacity of 1109 mAh g−1 at a current density of 0.5 A g−1 with coulombic efficiency reaching almost 100% for 200 cycles. The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks, the incorporation of nitrogen doping, and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods.


2016 ◽  
Vol 40 (10) ◽  
pp. 8202-8205 ◽  
Author(s):  
Yourong Wang ◽  
Kai Xie ◽  
Xu Guo ◽  
Wei Zhou ◽  
Guangsen Song ◽  
...  

A mesoporous nano-SiO2 anode delivers high specific capacity, good cycling stability and high Coulombic efficiency.


Sign in / Sign up

Export Citation Format

Share Document