An Investigation on Anti-Corrosion Properties of Electroplated Copper-Graphene Nano-Composite Films

2020 ◽  
Vol 978 ◽  
pp. 499-504 ◽  
Author(s):  
Akhya Kumar Behera ◽  
Archana Mallik

In this report, graphene sheets used as reinforcements for improvement of anti-corrosion properties have been synthesized by electrochemical intercalation and exfoliation process. The (001) and (002) plane of graphene sheets at a 2θ angle of 13.2 and 26.13 confirmed by X-ray diffraction pattern. High-resolution TEM confirms 8-12 layers of graphene present in the final products. The as-received graphene sheets have been used as reinforcement with copper matrix to synthesize Cu-Gr nanocomposite by electrodeposition method. The results and investigations of Cu-Gr composite thin films deposited from the bath containing 0.1g/L and 0.5g/L graphene concentrations with acidic copper sulfate solution have been compared. The surface morphology and roughness of composites were studied by SEM, AFM and surface profiler. The presence of graphene in Cu-Gr nanocomposite confirmed by EDS analysis. It was observed that the reinforcement particle has increased the mechanical properties of Cu-Gr composite (by 30%) with the addition to the copper matrix. The corrosion resistance of sample was studied by Tafel extrapolation method in standard borate buffer solution. For nanocomposites of 0.5g/L graphene, the values of Tafel constants are, βa=177.37 mv, βc=138.51 mv, Icorr = 9.3165×10-7Amp/cm2, Ecorr = -0.051 volts and corrosion rate 0.01028 mm/a as comparison to the corrosion rate of pure electroplated copper of a value of 0.029 mm/a. The corrosion rate of 0.5g/L Cu-Gr composite was found to be decreased by 2.7 times as compared to pure copper thin films. The structure of the films before and after corrosion was also analyzed to co-relate the electrochemical and structural relationship.

Author(s):  
O. M. Kanunnikova ◽  
V. V. Aksenova ◽  
B. E. Pushkarev ◽  
V. I. Ladyanov

The influence of domestic VNKh-L type nitrogen-containing corrosion inhibitors on the corrosion patterns of zinc coating on steel in a neutral environment was investigated. The paper aims to study the structure of the corroding zinc coating surface, as well as the influence of conditions simulating the degradation of inhibitors under actual application conditions on their protective properties. Mechanical activation in a ball planetary mill was used to simulate the thermal and deformation conditions of inhibitors. Zinc coating corrosion on steel was carried out in a sulfate-chloride environment simulating atmospheric corrosion and in borate buffer solution. The concentration of inhibitors in corrosion environments was 0,2 wt.%. The corroded surface morphology of the zinc coating was studied using the Philips SEM-515 scanning electron microscope (at an accelerating voltage of 10 kV) with an X-ray micro probe. Studies of the zinc coating corrosion rate on St 08 were carried out by the indirect measurement of corrosion resistance using the MONIKOR-1 corrosion meter. Borate buffer solution (Na2B4O7 + H3BO3, pH = 6,6) and the solution simulating atmospheric corrosion (NaCl + + Na2SO4, pH = 6,0) were used as corrosive environments. The corrosion rate of samples in corrosive environments without inhibitors was taken as 1. Exposure time of each sample in corrosive environments was 3 h. The chemical composition of corrosion products was studied by mirror reflection in the IR range. The IR spectra of metal plate surfaces were recorded on the FSM-1202 IR Fourier spectrometer in a wavelength range of 450–4000 cm–1 with a resolution of 2 cm–1 and an accumulation of 100 scans. A mirror reflection attachment with a 10° angle of incidence was used to obtain reflection spectra. The zinc coating corrosion rate in sulfate-chloride and borate environments in the presence of inhibitors based on benzotriazole and cyclohexylamine was virtually not reduced compared to the corrosion rate in the same environments without inhibitors. When both initial and mechanically activated inhibitors based on morpholine and benzotriazole are added to the corrosion environment, the iron corrosion rate decreases compared to the corrosion rate in the same environments without inhibitors. In the presence of initial and mechanically activated inhibitors of both groups, pitting corrosion of the zinc coating in the studied corrosion environments is observed. At the same time, the pitting depth under corrosion conditions is less than the zinc coating thickness.


2019 ◽  
Vol 53 (18) ◽  
pp. 2545-2553 ◽  
Author(s):  
Anbesh Jamwal ◽  
Prem Prakash ◽  
Devendra Kumar ◽  
Neera Singh ◽  
Kishor K Sadasivuni ◽  
...  

The aim of the present study is to investigate the effect of SiC-graphite reinforcement on the properties of pure copper. Copper matrix composites with SiC-graphite reinforcement (0, 2.5,5, 7.5 and 10 wt.%) were prepared by stir casting process. Microstructure, phase, density, hardness and wear rate of prepared samples have been investigated. X-ray diffraction revealed that there is no intermediate phase formation between the reinforcement and matrix as a result of interfacial bonding between them. Microstructure study shows the uniform distribution of SiC-graphite particles in the Cu-matrix. Mechanical and corrosion properties of these Cu matrix MMCs were found to be dependent on the reinforcement content. Hardness was found to decrease with the addition of graphite due to its soft nature. Composite containing 5 wt.% reinforcement has shown minimum wear rate and maximum corrosion resistance. It is expected that the present composite will be useful for thermal management applications especially in heat exchangers.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 288
Author(s):  
Mattia Franceschi ◽  
Luca Pezzato ◽  
Alessio Giorgio Settimi ◽  
Claudio Gennari ◽  
Mirko Pigato ◽  
...  

A novel high silicon austempered (AHS) steel has been studied in this work. The effect of different austenitizing temperatures, in full austenitic and biphasic regime, on the final microstructure was investigated. Specimens were austenitized at 780 °C, 830 °C, 850 °C and 900 °C for 30 min and held isothermally at 350 °C for 30 min. A second heat treatment route was performed which consisted of austenitizing at 900 °C for 30 min and austempering at 300 °C, 350 °C and 400 °C for 30 min. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) have been used to evaluate the microstructural evolution. These techniques revealed that the microstructures were composed of carbide-free bainite, ferrite, martensite and retained austenite (RA) in different volume fractions (Vγ). An aqueous borate buffer solution with 0.3 M H3BO3 and 0.075 M Na2B4O7∂10H2O (pH = 8.4) was used for corrosion tests in order to evaluate the influence of the different volume fractions of retained austenite on the corrosion properties of the specimens. The results showed that when increasing the austenitization temperatures, the volume fractions of retained austenite reached a maximum value at 850 °C, and decrease at higher temperatures. The corrosion properties were investigated after 30 min and 24 h immersion by means of potentiodynamic polarization (after 30 min) and electrochemical impedance spectroscopy (after both 30 min and 24 h) tests. The corrosion resistance of the samples increased with increases in the volume fraction of retained austenite due to lower amounts of residual stresses.


2019 ◽  
Vol 11 (5) ◽  
pp. 05020-1-05020-5
Author(s):  
S. I. Ryabtsev ◽  
◽  
V. A. Polonskyy ◽  
O. V. Sukhova ◽  
M. V. Berun ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Nagoor Basha Shaik ◽  
Kedar Mallik Mantrala ◽  
Balaji Bakthavatchalam ◽  
Qandeel Fatima Gillani ◽  
M. Faisal Rehman ◽  
...  

AbstractThe well-known fact of metallurgy is that the lifetime of a metal structure depends on the material's corrosion rate. Therefore, applying an appropriate prediction of corrosion process for the manufactured metals or alloys trigger an extended life of the product. At present, the current prediction models for additive manufactured alloys are either complicated or built on a restricted basis towards corrosion depletion. This paper presents a novel approach to estimate the corrosion rate and corrosion potential prediction by considering significant major parameters such as solution time, aging time, aging temperature, and corrosion test time. The Laser Engineered Net Shaping (LENS), which is an additive manufacturing process used in the manufacturing of health care equipment, was investigated in the present research. All the accumulated information used to manufacture the LENS-based Cobalt-Chromium-Molybdenum (CoCrMo) alloy was considered from previous literature. They enabled to create a robust Bayesian Regularization (BR)-based Artificial Neural Network (ANN) in order to predict with accuracy the material best corrosion properties. The achieved data were validated by investigating its experimental behavior. It was found a very good agreement between the predicted values generated with the BRANN model and experimental values. The robustness of the proposed approach allows to implement the manufactured materials successfully in the biomedical implants.


2014 ◽  
Vol 564 ◽  
pp. 455-460
Author(s):  
Faiz Ahmad ◽  
Muhammad Aslam ◽  
M. Rafi Raza ◽  
Ali S. Muhsan ◽  
M.irfan Shirazi

The performance of the micro-chip is affected by overheating and hence reduces the efficiency of electronic devices. The development of high thermal conductivity material can solve problems associated with dissipation of heat from the micro-chips. Thermal conductivity for carbon nanotubes (CNTs) are in the ranges of 1200-3000 W/moK which considered as the best candidate material for heat sink applications. This research investigates the fabrication of CNTs reinforced copper composites using powder metallurgy method. Copper powder and CNTs were ball milled to prepare mixtures and compacted at 600 MPa to fabricate test samples. The compacted test samples were sintered in argon atmosphere at 850oC. Sintered density of CNTs/Cu composites was measured and compared with theoretical density. Density data showed that 98% sintered density was achieved. Optical and scanning electron microscopic (SEM) examination of sintered compacts showed good grain growth, however porosity was also noted in sintered samples. Field emission scanning electron microscopy (FESEM) showed well dispersion of CNTs in copper matrix and interfacial bonding between copper particle and CNTs. In this experiment, the addition of 2 % vol. CNTs in copper matrix showed 9% increase in thermal conductivity approximately compared to thesintered pure copper.


2007 ◽  
Vol 9 (7) ◽  
pp. 1672-1676 ◽  
Author(s):  
Takatoshi Yamamoto ◽  
Koji Fushimi ◽  
Masahiro Seo ◽  
Shiro Tsuri ◽  
Tetsuo Adachi ◽  
...  

Author(s):  
Pornvitoo Rittinon ◽  
Ken Suzuki ◽  
Hideo Miura

Copper thin films are indispensable for the interconnections in the advanced electronic products, such as TSV (Trough Silicon Via), fine bumps, and thin-film interconnections in various devices and interposers. However, it has been reported that both electrical and mechanical properties of the films vary drastically comparing with those of conventional bulk copper. The main reason for the variation can be attributed to the fluctuation of the crystallinity of grain boundaries in the films. Porous or sparse grain boundaries show very high resistivity and brittle fracture characteristic in the films. Thus, the thermal conductivity of the electroplated copper thin films should be varied drastically depending on their micro texture based on the Wiedemann-Franz’s law. Since the copper interconnections are used not only for the electrical conduction but also for the thermal conduction, it is very important to quantitatively evaluate the crystallinity of the polycrystalline thin-film materials and clarify the relationship between the crystallinity and thermal properties of the films. The crystallinity of the interconnections were quantitatively evaluated using an electron back-scatter diffraction method. It was found that the porous grain boundaries which contain a significant amount of vacancies increase the local electrical resistance in the interconnections, and thus, cause the local high Joule heating. Such porous grain boundaries can be eliminated by control the crystallinity of the seed layer material on which the electroplated copper thin film is electroplated.


Sign in / Sign up

Export Citation Format

Share Document