Experimental Investigation on Thermal Conduction of Carbon Nanotubes Reinforced Copper Matrix Composites

2014 ◽  
Vol 564 ◽  
pp. 455-460
Author(s):  
Faiz Ahmad ◽  
Muhammad Aslam ◽  
M. Rafi Raza ◽  
Ali S. Muhsan ◽  
M.irfan Shirazi

The performance of the micro-chip is affected by overheating and hence reduces the efficiency of electronic devices. The development of high thermal conductivity material can solve problems associated with dissipation of heat from the micro-chips. Thermal conductivity for carbon nanotubes (CNTs) are in the ranges of 1200-3000 W/moK which considered as the best candidate material for heat sink applications. This research investigates the fabrication of CNTs reinforced copper composites using powder metallurgy method. Copper powder and CNTs were ball milled to prepare mixtures and compacted at 600 MPa to fabricate test samples. The compacted test samples were sintered in argon atmosphere at 850oC. Sintered density of CNTs/Cu composites was measured and compared with theoretical density. Density data showed that 98% sintered density was achieved. Optical and scanning electron microscopic (SEM) examination of sintered compacts showed good grain growth, however porosity was also noted in sintered samples. Field emission scanning electron microscopy (FESEM) showed well dispersion of CNTs in copper matrix and interfacial bonding between copper particle and CNTs. In this experiment, the addition of 2 % vol. CNTs in copper matrix showed 9% increase in thermal conductivity approximately compared to thesintered pure copper.

2010 ◽  
Vol 297-301 ◽  
pp. 820-825
Author(s):  
Naďa Beronská ◽  
Pavol Štefánik ◽  
Karol Iždinský

Copper matrix composite with pure copper matrix reinforced with high modulus carbon fibres Thornel K 1100 was prepared by gas pressure infiltration technique. As-received composite was subjected to thermal expansion and thermal conductivity measurements in longitudinal and transversal directions. Large anisotropy of properties as well as surprisingly good structural stability has been observed. The mean coefficients of thermal expansion as low as 0.8 x 10-6 K-1 in longitudinal and as high as 23.5 x 10-6 K-1 in transversal directions were determined, the thermal conductivities as high as 650 Wm-1K-1 in longitudinal direction and as low as 60.7 Wm-1K-1in transversal directions were measured.


2013 ◽  
Vol 275-277 ◽  
pp. 1789-1793 ◽  
Author(s):  
Long Shan Xu ◽  
Xiao Hua Chen ◽  
Xing Jun Liu

Multi-walled carbon nanotube (MWCNT) reinforced copper nanocomposites were prepared using a unique spherical MWCNT-implanted copper composite powders. The MWCNTs are homogenously ‘locked’ in the composite and tightly bonded to the matrix, which makes them play excellent reinforcement role on the microhardness compared with the unreinforced pure copper. Although the thermal conductivity is not enhanced for the thermal resistance between the carbon nanotubes and the copper matrix; it is still high enough to be used as electronic packaging materials even the concentration of MWCNTS in the composite is up to 5 wt%. Furthermore, the thermal expansion of the composites decreased apparently with the addition of the carbon nanotubes.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Guobin Li ◽  
Ningning Peng ◽  
Di Sun ◽  
Shude Sun

A series of copper–Al2O3 composite materials (CACMs) with 0, 2, 4, and 6 wt.% of Al2O3 (average size about 80 nm) was fabricated by powder metallurgy method. The tribological behavior of CACMs was investigated by a ring-on-block sliding friction test. The results show that the hardness and the wear resistance of CACMs are improved by the addition of Al2O3. The CACMs with 0% Al2O3 (pure copper) shows the mechanism of adhesive wear and have very poor wear resistance. By comparing with the pure copper, the wear resistance of the CACMs with 2% and 6% Al2O3 is improved. When the proportion of Al2O3 is 4%, slightly abrasive wear occurs at the interface between two sliding surfaces, and the CACMs achieve higher wear resistance in comparison to that with 2% and 6% Al2O3.


2010 ◽  
Vol 150-151 ◽  
pp. 979-983
Author(s):  
Run Guo Zheng ◽  
Zai Ji Zhan ◽  
Bo Liang ◽  
Wen Kui Wang

Copper matrix composites with different La2O3 content were fabricated by powder metallurgy method. Sliding wear behavior of the Cu-La2O3 composites was carried out by using a pin-on-disk wear tester under dry sliding conditions at a constant sliding speed of 20 m/s. The results showed that the wear rate of the composites was significantly lower than that of pure copper. The friction coefficient and wear rate of Cu matrix composites decreased significantly by incorporation of La2O3 particles. For determination of the wear mechanisms of the composites, the worn surfaces were examined using scanning electron microscopy. It is found that the main wear mechanisms of the sintered copper-La2O3 composites were oxidation wear and adhesive wear.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341025 ◽  
Author(s):  
YU HONG ◽  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YUCHENG WU

Copper-matrix composites reinforced with SiC particles are prepared by mechanical alloying. The microstructure characteristics, relative density, hardness, tensile strength, electrical conductivity, thermal conductivity and wear properties of the composites are investigated in this paper. The results indicate that the relative density, macro-hardness and mechanical properties of composites are improved by modifying the surface of SiC particles with Cu and Ni . The electrical conductivity and thermal conductivity of composites, however, are not obviously improved. For a given volume fraction of SiC , the Cu / SiC ( Ni ) has higher mechanical properties than Cu / SiC ( Cu ). The wear resistance of the composites are improved by the addition of SiC . The composites with optimized interface have lower wear rate.


2010 ◽  
Vol 150-151 ◽  
pp. 144-149
Author(s):  
Hong Wei Xing ◽  
Jin Song Zhang ◽  
Xiao Ming Cao

Copper matrix composites reinforced with 3D-SiC network (15v% and 20v% SiC) were fabricated by squeezing copper alloy into 3D-SiC network preforms. The thermo-physical properties of the copper matrix composites were investigated. The specific heat capacities of the composites were about 0.39~0.50 J•g-1•K-1. The coefficients of thermal expansion (CTEs) of the composites were found to be lower than 6.9×10-6 -1 at Room Temperature. The composites exhibited high thermal stability for 3D-SiC network advent. The thermal conductivity of the composites was in the range of 50~80W•m−1•K−1. The thermo-physical properties of Cu matrix composites had a great relationship with the structures of 3D-SiC network preforms. The thermal conductivity of the composites decreased with an increase in the volume fraction of SiC or the structures of the limbs changing compacted, but the CTEs were not completely according this rule.


2011 ◽  
Vol 391-392 ◽  
pp. 524-529 ◽  
Author(s):  
Wen Liang Chen ◽  
Chun Ping Huang ◽  
Li Ming Ke

Carbon nanotubes(CNTs) reinforced copper matrix composites were successfully produced by Friction Stir Processing (FSP). The effect of applying multiple FSP passes on the forming of composites was studied, the microstructure, microhardness and conductivity of the good forming composite were analyzed. The experimental results showed that CNTs uniformly distributed and good forming composite can be obtained by three FSP passes. Compared to the parent material, the grain size of the composite has significantly refined, and the microhardness of the composite has also greatly improved, but the conductivity of the composite has a small decrease.


Sign in / Sign up

Export Citation Format

Share Document