Study on the Influence of Anisotropy on Cutting Performance of Aviation Aluminium Alloy 7050-T7451

2020 ◽  
Vol 990 ◽  
pp. 29-35
Author(s):  
Hui Wang ◽  
Ying Meng ◽  
Duo Duo Li ◽  
Xiu Li Fu ◽  
Qi Hang Shi

Based on the hypocycloid theory, a highspeed orthogonal cutting simulation model was established. The cutting parameters (cutting speed, feed rate) and plane forming angle of the workpiece of aeronautical aluminium alloy 7050-T7451 pre-stretched rolled sheet were simulated and validated. The mapping relationship between cutting parameters, anisotropy and cutting performance was analyzed. The results show that the degree of anisotropy and the difficulty of material cutting are proportional to the forming angle, and the anisotropy decreases with the increase of cutting speed and the decrease of feed speed. Finally, the optimal cutting process range of aluminum alloy 7050-T7451 was obtained, which provides data support for highspeed cutting of anisotropic materials.

2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


Author(s):  
Felicia Stan ◽  
Daniel Vlad ◽  
Catalin Fetecau

This paper presents an experimental investigation of the cutting forces response during the orthogonal cutting of polytetrafluoroethylene (PTFE) and PTFE-based composites using the Taguchi method. Cutting experiments were conducted using the L27 orthogonal array and the effects of the cutting parameters (feed rate, cutting speed and rake angle) on the cutting force were analyzed using the S/N ratio response and the analysis of variance (ANOVA). Statistical models that correlate the cutting force with process variables were developed using ANOVA and polynomial regression. The variation of the apparent friction coefficient was analyzed with respect to tool geometry and the cutting process. The results indicated that cutting and thrust forces increase with increasing feed rate, and decrease with increasing rake angles from negative to positive values and increasing cutting speed. A power law relationship between the apparent friction coefficient and the normal force exerted by the chip on the tool-rake face was identified, the former decreasing with an increasing normal force.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 276 ◽  
Author(s):  
Muhammad Asad ◽  
Hassan Ijaz ◽  
Waqas Saleem ◽  
Abdullah Mahfouz ◽  
Zeshan Ahmad ◽  
...  

This contribution presents three-dimensional turning operation simulations exploiting the capabilities of finite element (FE) based software Abaqus/Explicit. Coupled temperature-displacement simulations for orthogonal cutting on an aerospace grade aluminum alloy AA2024-T351 with the conceived numerical model have been performed. Numerically computed results of cutting forces have been substantiated with the experimental data. Research work aims to contribute in comprehension of the end-burr formation process in orthogonal cutting. Multi-physical phenomena like crack propagation, evolution of shear zones (positive and negative), pivot-point appearance, thermal softening, etc., effecting burr formation for varying cutting parameters have been highlighted. Additionally, quantitative predictions of end burr lengths with foot type chip formation on the exit edge of the machined workpiece for various cutting parameters including cutting speed, feed rate, and tool rake angles have been made. Onwards, to investigate the influence of each cutting parameter on burr lengths and to find optimum values of cutting parameters statistical analyses using Taguchi’s design of experiment (DOE) technique and response surface methodology (RSM) have been performed. Investigations show that feed has a major impact, while cutting speed has the least impact in burr formation. Furthermore, it has been found that the early appearance of the pivot-point on the exit edge of the workpiece surface results in larger end-burr lengths. Results of statistical analyses have been successfully correlated with experimental findings in published literature.


2012 ◽  
Vol 468-471 ◽  
pp. 397-400
Author(s):  
Yan Hai Tang ◽  
Jin Bing Hu ◽  
Ling Yang ◽  
Pei Xiang He

The traditional removal method of a vespiary is labor-costing with characteristics of low efficiency and safety. According to the work high above the ground with hidden risk of the vespiary removal, a mechanical vespiary exsector was designed. The exsector is driven by a high speed motor, and the vespiary is removed by a cutting wire with high revolution speed. The cutting part can rotate 90 through drawing a pulling rope. A 2-layer sealing mechanism is operated through another pulling rope. The vespiary exsector has overall characteristics of small scale, light weight and good dexterity. Orthogonal experiment results show that factors of cutting speed and feed speed significantly contribute the width of cutting slot at the significance levels of 0.01 and 0.05 respectively, and the optimum cutting parameters are: cutting speed 10000rpm, feed speed 0.04m/s and diameter of the cutting wire 2mm.


2012 ◽  
Vol 500 ◽  
pp. 152-156
Author(s):  
Zeng Hui Jiang ◽  
Ji Lu Feng ◽  
Xiao Ye Deng

A finite element model of a two dimensional orthogonal cutting process is developed. The simulation uses standard finite software is able to solve complex thermo-mechanical problems. A thermo-visco-plastic model for the machined material and a rigid cutting tool were assumed. One of the main characteristic of titanium alloy is serrated shape for a wide range of cutting conditions. In order to understand the influence of cutting parameters on the chip formation when machining titanium alloy Ti-6Al-4V. The influence of the cutting speed,the cutting depth and the feed on the chip shape giving rise to segmented chips by strain localisation is respectively discussed.


2017 ◽  
Vol 748 ◽  
pp. 224-228 ◽  
Author(s):  
Bao Liang Xing ◽  
Jing Wang ◽  
Hui Ying Cao ◽  
Shu Zhong Zhang ◽  
Wei Wei ◽  
...  

Based on the experiment of turning aluminium alloy (7075-T651), the relations between the fractal dimensions of cutting forces with machining parameters are studied. Cutting speed, feed speed and cutting depth are considered as the process parameters. The cutting force in turning aluminium alloy operation are measured and the fractal dimension are calculated using the algorithm of correlation dimension. From main effect plots the fractal dimensions of three directions of cutting forces are reduced with the increase of cutting speed, increased with the increase of cutting depth and insignificant with the increase of feed speed. The mathematic models of fractal dimension of cutting force are developed using response surface methodology (RSM). The results of the ANOVA show that cutting speed and cutting depth have remarkable influence to fractal dimension Dx, Dy and Dz.


2017 ◽  
Vol 748 ◽  
pp. 212-217 ◽  
Author(s):  
Zheng Mei Zhang ◽  
Bao Liang Xing ◽  
Jing Wang ◽  
Hui Ying Cao ◽  
Shao Hua Li

Based on the experiment of milling aluminium alloy (7075-T651), the relations between the fractal dimensions of cutting forces with machining parameters are studied. Cutting speed, feed speed and cutting depth are considered as the process parameters. The cutting force in milling aluminium alloy operation are measured and the fractal dimension are calculated using the algorithm of correlation dimension. From main effect plots the fractal dimensions of three directions of cutting forces are reduced with the increase of cutting speed and increased with the increase of feed speed and cutting depth. The mathematic models of fractal dimension of cutting force are developed using response surface methodology (RSM). The results of the ANOVA show that feed speed and cutting depth have remarkable influence to fractal dimension Dx and Dy, cutting speed and feed speed for Dz.


2020 ◽  
Vol 27 (09) ◽  
pp. 1950209
Author(s):  
ÖMER ERKAN ◽  
GÖKHAN SUR ◽  
ENGIN NAS

In this study, the carbon fiber reinforced polymer (CFRP) composite material was drilled using different parameters ([Formula: see text] and [Formula: see text] Point Angle, 30, 60 and [Formula: see text] cutting speed and 0.06, 0.08 and [Formula: see text] feed rate). Experimental parameters were designed according to full factorial design method and the results were analyzed using Taguchi L18 experimental design. The results of the study show that the lowest surface roughness values are 0.1958 and [Formula: see text]m with the cutting speed of 90 [Formula: see text] and feed rate of [Formula: see text] in the Point angles of [Formula: see text] and [Formula: see text], respectively. When the results of Anova analysis were evaluated, parameters (feed speed, cutting speed and end point angle) according to the effect ratios on surface roughness were formed at the rates of 41.06%, 33.13% and 5.07%, respectively. The most suitable parameters according to S/N ratios were determined using A2B3C1 factors for the average surface roughness.


2008 ◽  
Vol 375-376 ◽  
pp. 26-30
Author(s):  
Kai Xue ◽  
Xiang Ming Xu ◽  
Gang Liu ◽  
Ming Chen

The chip formation and morphology are definitely affected by tool geometry and cutting parameters such as cutting speed, feed rate, and depth of cutting. An experiment investigation was presented to study the influence of tool geometry on chip morphology, and to clarify the effect of different cutting parameters on chip deformation in orthogonal turning the wheel steel. The result obtained in this study showed that tool geometry affected the chip morphology significantly; cutting speed was the most contributive factor in forming saw-tooth chip.


2005 ◽  
Vol 128 (2) ◽  
pp. 606-610 ◽  
Author(s):  
Rachid M’Saoubi ◽  
Hariharan Chandrasekaran

Cutting tool temperature distribution was mapped using the infrared-charge-coupled device technique during machining of carbon steel SS2511 (∼AISI 3115) and stainless steel AISI 316L under oblique cutting conditions with chip breaker geometry inserts. Results indicated that the temperature on the rake surface was not uniform. Local maximum temperature points are present on the tool face at different locations, i.e., land, groove, backwall, and at the end of tool chip contact. Further investigation of the effect of cutting parameters on the tool temperature indicated that a suitable combination of cutting speed and feed resulted in a lower tool temperature for conditions of comparable material removal rate.


Sign in / Sign up

Export Citation Format

Share Document