Mechanism of Chip Deformation in Orthogonal Cutting the Wheel Steel

2008 ◽  
Vol 375-376 ◽  
pp. 26-30
Author(s):  
Kai Xue ◽  
Xiang Ming Xu ◽  
Gang Liu ◽  
Ming Chen

The chip formation and morphology are definitely affected by tool geometry and cutting parameters such as cutting speed, feed rate, and depth of cutting. An experiment investigation was presented to study the influence of tool geometry on chip morphology, and to clarify the effect of different cutting parameters on chip deformation in orthogonal turning the wheel steel. The result obtained in this study showed that tool geometry affected the chip morphology significantly; cutting speed was the most contributive factor in forming saw-tooth chip.

Author(s):  
Felicia Stan ◽  
Daniel Vlad ◽  
Catalin Fetecau

This paper presents an experimental investigation of the cutting forces response during the orthogonal cutting of polytetrafluoroethylene (PTFE) and PTFE-based composites using the Taguchi method. Cutting experiments were conducted using the L27 orthogonal array and the effects of the cutting parameters (feed rate, cutting speed and rake angle) on the cutting force were analyzed using the S/N ratio response and the analysis of variance (ANOVA). Statistical models that correlate the cutting force with process variables were developed using ANOVA and polynomial regression. The variation of the apparent friction coefficient was analyzed with respect to tool geometry and the cutting process. The results indicated that cutting and thrust forces increase with increasing feed rate, and decrease with increasing rake angles from negative to positive values and increasing cutting speed. A power law relationship between the apparent friction coefficient and the normal force exerted by the chip on the tool-rake face was identified, the former decreasing with an increasing normal force.


2009 ◽  
Vol 407-408 ◽  
pp. 420-423
Author(s):  
He Ping Wang ◽  
Xue Ping Zhang

An explicit dynamic coupled thermal-mechanical Arbitrary Lagrangian Eulerian (ALE) model was established to simulate orthogonal cutting AISI 52100 bearing steel, and its temperature and stress distribution. Based on ABAQUS, The ALE approach effectively simulates plastic flow around round edge of the cutting tool without employing chip separation criteria. The calculation results reveal that cutting speed and cutting depth have great impact on chip morphology, stress and temperature distribution in the finished surface and subsurface, the predicted temperature agrees well with experiment data obtained under the similar cutting conditions as well as the change in chip morphology from continuous to sawtooth as the cutting speed increases.


2012 ◽  
Vol 500 ◽  
pp. 152-156
Author(s):  
Zeng Hui Jiang ◽  
Ji Lu Feng ◽  
Xiao Ye Deng

A finite element model of a two dimensional orthogonal cutting process is developed. The simulation uses standard finite software is able to solve complex thermo-mechanical problems. A thermo-visco-plastic model for the machined material and a rigid cutting tool were assumed. One of the main characteristic of titanium alloy is serrated shape for a wide range of cutting conditions. In order to understand the influence of cutting parameters on the chip formation when machining titanium alloy Ti-6Al-4V. The influence of the cutting speed,the cutting depth and the feed on the chip shape giving rise to segmented chips by strain localisation is respectively discussed.


2014 ◽  
Vol 800-801 ◽  
pp. 81-86
Author(s):  
Zhen Li ◽  
Er Liang Liu ◽  
Teng Da Wang ◽  
Jiao Li ◽  
Yong Chun Zheng

The various feed rate and cutting speed have an important influence on cutting force, tool wear and chip morphology in machining titanium alloy. Cutting experiments are carried out analyzing the titanium alloy Ti6Al4V under different cutting speed and feed rate, the cutting force values are obtained. The analysis results show that the dominant wear pattern is adhesion wear and chipping. And the tool wear also has an influence on chip morphology.


2011 ◽  
Vol 697-698 ◽  
pp. 125-128
Author(s):  
Shen Yung Lin ◽  
Y.H. Lin ◽  
M.S. Hsu

After the processing of a clock dial, the precision dimension and uniform distribution of the tool-trace pattern on the dial surface have a connection with luster image and attractiveness, which in turn would have an impact on the additional values and prices for a clock. Through a systematic investigation among the lathe structure, process parameter and cutting-tool geometry in advance, the total results indicated that the rigidity of the lathe structure and the precision of the slider movements are excellent and they had only a little effect on the surface-related quality for a dial face turning. Hence, the combination of process parameter and cutting-tool angle becomes more essential. End face turning simulation and experiment of a copper alloy were thus conducted in this paper, and the chip formation process and machined surface-related quality are investigated, respectively. The effects of cutting tool geometry and process parameter on the results of chip formation, surface rough, tool-trace pattern and luster uniformity are investigated, and these results are also compared with each other. The results show that when larger clearance and rake angles used in conjunction with a lower feed rate, no matter how much cutting speed was enhanced, the surface-related quality of a dial surface is not good. However, when these two larger angles used combined with a larger feed rate, the quality of a dial surface would slightly be improved. By using smaller clearance and rake angles along with the higher feed rate and cutting speed would obtain a better surface-related quality with uniform luster and attractiveness.


Author(s):  
Shenfeng Wu ◽  
Xueping Zhang ◽  
C. Richard Liu

This paper proposes a thermo-mechanical orthogonal cutting finite element model (FEM) to investigate the variation of chip morphology from continuous chip to small and large saw-tooth chip. The corresponding experiments of hard turning AISI 52100 steel are conducted to validate the proposed FE model. Three one-factor simulation experiments are conducted to determine the evolution of chip morphology along feed rate, rake angle and cutting speed respectively. The chip morphology evolution is described by the variations of dimensional values, saw-tooth degree and chip segmental frequency. The research suggests that chip morphology transit from continuous to sawtooth chip with increasing the feed rate and cutting speed, and changing a positive rake angle to a negative rake angle. There exists a critical cutting speed at which the chip morphology transfers from continuous to saw-tooth chips. The saw-tooth chip segmental frequency decreases as the feed rate and negative rake angle value increase, but increases almost linearly with the cutting speed. The larger negative rake angle, the larger feed rate and high cutting speed dominate the sawtooth chip morphology while positive rake angle, small feed rate and low cutting speed determine continuous chip morphology.


2009 ◽  
Vol 626-627 ◽  
pp. 387-392 ◽  
Author(s):  
L.T. Yan ◽  
Song Mei Yuan ◽  
Qiang Liu

The cutting performance (tool wear, surface roughness of machined work-piece and chip formation)of wet, dry and Minimum Quantity Lubrication (MQL) machining when milling of high strength steel (PCrNi2Mo) using cemented carbide tools under different (cutting speed, depth of cut, feed rate) was analyzed. The experimental results showed that as the cutting speed, depth of cut and feed rate changed, MQL conditions provided the lowest flank wear and the highest surface quality. Chip formation produced under MQL conditions become more favorable in terms of color and shape. The results obtained prove the potential of using MQL technique in the milling process of high strength steel (PCrNi2Mo) for high cutting speed, feed rate and depth of cut.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 159
Author(s):  
M. Azizur Rahman ◽  
Md Shahnewaz Bhuiyan ◽  
Sourav Sharma ◽  
Mohammad Saeed Kamal ◽  
M. M. Musabbir Imtiaz ◽  
...  

In this paper, the investigation of chip formation of aluminum alloy in different machining strategies (i.e., micro and macro cutting) is performed to develop a holistic view of the chip formation phenomenon. The study of chip morphology is useful to understand the mechanics of surface generation in machining. Experiments were carried out to evaluate the feed rate response (FRR) in both ultra-precision micro and conventional macro machining processes. A comprehensive study was carried out to explore the material removal mechanics with both experimental findings and theoretical insights. The results of the variation of chip morphology showed the dependence on feed rate in orthogonal turning. The transformation of discontinuous to continuous chip production—a remarkable phenomenon in micro machining—has been identified for the conventional macro machining of Al alloy. This is validated by the surface crevice formation in the transition region. Variation of the surface morphology confirms the phenomenology (transformation mechanics) of chip formation.


2009 ◽  
Vol 626-627 ◽  
pp. 663-668
Author(s):  
Jun Li Li ◽  
Ming Chen ◽  
Bin Rong

The nickel-based superalloy GH80A has been widely used in kinds of aeronautical key structures because of its high yield stress and anti-fatigue performance at high temperature. However, it is also a typical difficult-to-cut material. In order to improve cutting process, kinds of methods have been applied to study cutting process including experimental approach and finite element method (FEM). In this paper, a comparison of chip formation is carried out between traditional Johnson-Cook (JC) model and Isotropic model. Besides, effects of tool rake angle and friction coefficient on chip formation are investigated by Isotropic model. FEM predicated results such as stress and cutting temperature are also analyzed. Relative turning tests are performed and comparison of chip morphology between FEM and experiment is carried out.


2013 ◽  
Vol 773-774 ◽  
pp. 894-901
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

Majority of the components of aerospace and automotive vehicles need different machining operations, mainly for the assembly requirements. The components have to present both high dimensional precision and surface quality. This present work is concerned with the effect of cutting parameters (cutting speed, feed rate and depth of cut) on the surface roughness and the chip formation in turning process. The machining results are compared with LM6 aluminium alloy and TiC reinforced metal matrix composite under the same cutting conditions and tool geometry. The cutting condition models designed based on the Design of Experiments Response Surface Methodology. The objective of this research is to obtaining the optimum cutting parameters to get a better surface quality and also the chip formation and furthermore does not hazardous to the worker and the machined products quality. Results shows that Surface roughness values of LM6-TiC composite are higher as compared LM6 alloy at similar cutting condition. With increasing in cutting speed improves the surface quality. The surface quality increases with decrease of the feed rate and the depth of cut. There are difference chip forms for LM6 aluminium alloy and Al-TiC composite for a similar of cutting condition. Generally, chip formations of both materials are acceptable and favourable for the worker as well as the products and the tools.


Sign in / Sign up

Export Citation Format

Share Document