AlCoCuFeNi High-Entropy Alloy Coating Fabricated by Laser Cladding with Gas-Atomized Pre-Alloy Powders

2020 ◽  
Vol 993 ◽  
pp. 1148-1154 ◽  
Author(s):  
Mi Na Zhang ◽  
Wen Tai Ouyang ◽  
Jun Ke Jiao ◽  
Wen Wu Zhang ◽  
Xiang Lin Zhou

AlCoCuFeNi high-entropy alloy coating was prepared by laser cladding with gas-atomized pre-alloy powders. The phase, microstructure and microhardness of HEA coating have been investigated. The results show that the AlCoCuFeNi coating was about ~ 800 μm in thickness, and the hard coating with strong metallurgical bonding to the substrate was obtained. The HEA coating is mainly composed of BCC dendrites phase and Cu-rich FCC phase within the interdendrite. The transition in structure from columnar to equiaxed grain can be observed in the coating due to the effect of different temperature gradient. The laser clad AlCoCuFeNi coating exhibited high microhardness of about 427.7 HV0.2, which was 2.5 times that of the 45# steel substrate.

2016 ◽  
Vol 849 ◽  
pp. 64-70 ◽  
Author(s):  
Shi Da Liu ◽  
Cun Yuan Peng ◽  
Ming Xing Ma ◽  
Wen Jin Liu ◽  
Wei Ming Zhang

Al1.3FeCoNiCuCr high entropy alloy (HEA) coatings were prepared by pre-placed laser cladding on 921A steel substrate, and the study on the phase transition of the Al1.3FeCoNiCuCr coating due to the introduction of Mn was conducted. The combination of TEM and XRD results showed that the Al1.3FeCoNiCuCr HEA coatings without Mn addition typically consisted of two kinds of grains, i.e., one is composed of only FCC phase, and the another is a mixture of BCC and FCC phases. The two phases were of similar ratio in the coatings, while nanoparticulate precipitates were observed in the bcc phase. When 3 wt. % Mn was introduced into the alloy, the coatings consisted of also FCC and BCC phase. However, most of the grains were in FCC phase, while the BCC phase with a lath shape only distributed between the FCC phases. High hardness nanobanded precipitates were observed in the FCC phase. It is clearly revealed that the phase structure of Al1.3FeCoNiCuCr coatings undergoes a dramatic transition due to the introducing of Mn.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1036
Author(s):  
Weijie Yu ◽  
Yun Wang ◽  
Ruitao Li ◽  
Junhong Mao

AlCoCrFeNiTi high-entropy alloy coatings (HEACs) were prepared by mechanical alloying (MA) and laser cladding (LC) process on H13 hot-working die steel substrate. Phase evolution, microstructure, and mechanical properties of the alloyed powder and HEACs were investigated in detail. The final milling AlCoCrFeNiTi coating powders exhibited simple body centered cubic (BCC) phase and mean granular size of less than 4 μm. With the increase of heat input of the laser, partial BCC phase transformed into minor face centered cubic (FCC) phase during LC. AlCoCrFeNiTi HEACs showed excellent metallurgical bonding with the substrate, and few defects. Moreover, the microhardness of AlCoCrFeNiTi HEACs reached 1069 HV due to the existence of the hard oxidation and the second phase grains, which are about five times that of the substrate. The laser surface cladding HEACs exhibited deteriorated tensile property compared with that of the substrate and the fracture generally occurred in the region of HEACs. The fracture mechanism of AlCoCrFeNiTi HEACs was dominated by the comprehensive influence of brittle fracture and ductile fracture.


Applied laser ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 7-13 ◽  
Author(s):  
陈岁元 Chen Suiyuan ◽  
徐世海 Xu Shihai ◽  
王力 Wang Li ◽  
尹桂莉 Yin Guili ◽  
梁京 Liang Jing ◽  
...  

2016 ◽  
Vol 363 ◽  
pp. 543-547 ◽  
Author(s):  
Hui Zhang ◽  
Wanfei Wu ◽  
Yizhu He ◽  
Mingxi Li ◽  
Sheng Guo

Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 2 ◽  
Author(s):  
Wenyuan Cui ◽  
Sreekar Karnati ◽  
Xinchang Zhang ◽  
Elizabeth Burns ◽  
Frank Liou

Through laser metal deposition, attempts were made to coat AlCoCrFeNi, a high-entropy alloy (HEA), on an AISI 304 stainless steel substrate to integrate their properties. However, the direct coating of the AlCoCrFeNi HEA on the AISI 304 substrate was found to be unviable due to cracks at the interface between these two materials. The difference in compositional change was suspected to be the source of the cracks. Therefore, a new transition route was performed by coating an intermediate layer of CoFe2Ni on the AISI 304 substrate. Investigations into the microstructure, phase composition, elemental composition and Vickers hardness were carried out in this study. Consistent metallurgical bonding was observed along both of the interfaces. It was found that the AlCoCrFeNi alloy solidified into a dendritic microstructure. The X-ray diffraction pattern revealed a transition of the crystal structure of the AISI 304 substrate to the AlCoCrFeNi HEA. An intermediate step in hardness was observed between the AISI 304 substrate and the AlCoCrFeNi HEA. The AlCoCrFeNi alloy fabricated was found to have an average hardness of 418 HV, while the CoFe2Ni intermediate layer had an average hardness of 275 HV.


Sign in / Sign up

Export Citation Format

Share Document