scholarly journals Phase Evolution, Microstructure and Mechanical Property of AlCoCrFeNiTi High-Entropy Alloy Coatings Prepared by Mechanical Alloying and Laser Cladding

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1036
Author(s):  
Weijie Yu ◽  
Yun Wang ◽  
Ruitao Li ◽  
Junhong Mao

AlCoCrFeNiTi high-entropy alloy coatings (HEACs) were prepared by mechanical alloying (MA) and laser cladding (LC) process on H13 hot-working die steel substrate. Phase evolution, microstructure, and mechanical properties of the alloyed powder and HEACs were investigated in detail. The final milling AlCoCrFeNiTi coating powders exhibited simple body centered cubic (BCC) phase and mean granular size of less than 4 μm. With the increase of heat input of the laser, partial BCC phase transformed into minor face centered cubic (FCC) phase during LC. AlCoCrFeNiTi HEACs showed excellent metallurgical bonding with the substrate, and few defects. Moreover, the microhardness of AlCoCrFeNiTi HEACs reached 1069 HV due to the existence of the hard oxidation and the second phase grains, which are about five times that of the substrate. The laser surface cladding HEACs exhibited deteriorated tensile property compared with that of the substrate and the fracture generally occurred in the region of HEACs. The fracture mechanism of AlCoCrFeNiTi HEACs was dominated by the comprehensive influence of brittle fracture and ductile fracture.

2016 ◽  
Vol 849 ◽  
pp. 64-70 ◽  
Author(s):  
Shi Da Liu ◽  
Cun Yuan Peng ◽  
Ming Xing Ma ◽  
Wen Jin Liu ◽  
Wei Ming Zhang

Al1.3FeCoNiCuCr high entropy alloy (HEA) coatings were prepared by pre-placed laser cladding on 921A steel substrate, and the study on the phase transition of the Al1.3FeCoNiCuCr coating due to the introduction of Mn was conducted. The combination of TEM and XRD results showed that the Al1.3FeCoNiCuCr HEA coatings without Mn addition typically consisted of two kinds of grains, i.e., one is composed of only FCC phase, and the another is a mixture of BCC and FCC phases. The two phases were of similar ratio in the coatings, while nanoparticulate precipitates were observed in the bcc phase. When 3 wt. % Mn was introduced into the alloy, the coatings consisted of also FCC and BCC phase. However, most of the grains were in FCC phase, while the BCC phase with a lath shape only distributed between the FCC phases. High hardness nanobanded precipitates were observed in the FCC phase. It is clearly revealed that the phase structure of Al1.3FeCoNiCuCr coatings undergoes a dramatic transition due to the introducing of Mn.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 929
Author(s):  
Kaouther Zaara ◽  
Mahmoud Chemingui ◽  
Sophie Le Gallet ◽  
Yves Gaillard ◽  
Lluisa Escoda ◽  
...  

A FeCoNi(B0.5Si0.5) high-entropy alloy with the face-centered cubic (FCC) crystal structure was synthesized by mechanical alloying and spark plasma sintering (SPS). Phase evolution, microstructure, morphology and annealing behaviors were investigated. It was found that a single FCC solid solution appears after 50 h of milling. The grain size was 10 nm after 150 h of milling. Microstructure parameters were calculated by the Rietveld fitting of the X-ray Diffraction patterns. Magnetic characterizations of milled and annealed powders at 650 °C for 1 h were investigated. The heat treatment improves the magnetic properties of the milled powders by enhancing the saturation magnetization value from 94.31 to 127.30 emu/g and decreasing the coercivity from 49.07 to 29.57 Oe. The cohabitation of the FCC phase with the equilibrium crystalline phases observed after annealing is responsible of this magnetic softening. The as-milled powder was also consolidated by spark plasma sintering at 750 and 1000 °C. The obtained specimen consolidated at 750 °C improved the coercivity to 25.06 Oe and exhibited a compressive strength of 1062 Mpa and Vickers hardness of 518 ± 14 HV, with a load of 2 kN. The nanoindentation technique with the Berkovich indentor gave hardness and indentation elastic modulus of 6.3 ± 0.3 Gpa (~640 HV) and 111 ± 4 Gpa for samples consolidated by SPS at 750 °C.


2019 ◽  
Vol 956 ◽  
pp. 154-159 ◽  
Author(s):  
Hui Liang ◽  
Bing Yang Gao ◽  
Ya Ning Li ◽  
Qiu Xin Nie ◽  
Zhi Qiang Cao

For the purpose of expanding the application scope of HEA coating manufactured on the surface modification of materials, in this work, the Al1.5CrFeNiTi0.5 and Al1.5CrFeNiTi0.5W0.5 HEA coatings were successfully manufactured using laser cladding method on SUS304. The microstructures and wear resistance of coatings are researched systematically. It is found that the W0 and W0.5 HEA coatings all exhibit the dendritic structure, which are constituted by BCC phases and Laves phases. With W element addition, the phase structures of W0.5 coating remain unchanged. W is dissolved in both two phases, but the solid solubility in Laves phase is higher compared to that in BCC phase. W0.5 coating with the highest microhardness of 848.34 HV, and the W0 coating with the microhardness of 811.45 HV, both of whose microhardness are four times more than that of SUS304 substrate. Among all samples, the W0.5 coating shows the optimal wear performance because of its larger content of hard second phase ( Laves phase).


2013 ◽  
Vol 748 ◽  
pp. 79-85 ◽  
Author(s):  
L.C. Tsao ◽  
C.S. Chen ◽  
Kuo Huan Fan ◽  
Yen Teng Huang

In this study, an Al0.3CrFe1.5MnNi0.5high entropy alloy was synthesized by arc-melting in Ar. The as-cast alloy ingot was heat treated for 8 h at 650-750°C and then cooled in furnace to investigate the effects of age treatment on the microstructure, hardness and corrosion behaviour. The microstructure of as-cast sample has a typical rich-Cr BCC structure of dendrites, rich-Ni FCC interdendrite phases and a small fraction of cross-like rich-Ni FCC phase within the majority dendritic structure. During annealing treatment at 650°C, the cross-like FCC phase (β-FCC) gradually decreased, dendritic rich-Cr BCC phase transfers to Cr5Fe6Mn8phase, and the AlNi phase precipitated within the matrix dendrites. The interdendritic β1-FCC phases gradually decomposed and transfers to second-phase (β2FCC), and the AlNi precipitated phase coarsen during annealing at 750°C. In addition, Cr5Fe6Mn8phase gradually transfers to rich-Cr BCC phase during slow-cooling process. These precipitation phases in the grain matrix are the main age hardening mechanism. The potentiodynamic polarization of the Al0.3CrFe1.5MnNi0.5high entropy alloys, obtained in 3.5% NaCl solutions, clearly revealed that the corrosion resistance increases and the passive region decreases as annealing temperature increasing.


Coatings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
Juan Xu ◽  
Shouren Wang ◽  
Caiyun Shang ◽  
Shifeng Huang ◽  
Yan Wang

The CoCrFeNi high-entropy alloy coatings (HEACs) with different weight ratios (10 and 30 wt.%) of WC additions have been prepared using mechanical alloying and a vacuum hot pressing sintering technique on a Q235 steel substrate. The microstructures, microhardness, wear resistance, and corrosion resistance of HEACs were studied. The CoCrFeNi(WC) powders were obtained by mixing the CoCrFeNi HEA powders and WC particles. The sintered products of both HEACs with high relative density contained one solid solution phase with face-centered cubic structure, WC, and unknown precipitate phases. The transition boundary had a good metallurgical bonding with the coating and substrate. The average microhardness values of CoCrFeNi HEACs with 10 and 30 wt.% WC additions reached 475 and 531 HV respectively, which were far higher than that of the substrate (160 HV). Moreover, both coatings exhibited better wear resistance than the substrate under the same wear conditions. The 30 wt.% WC HEAC displayed the lower friction coefficient, and the shallower wear groove depth. The grain refinement strengthening and second-phase particle strengthening could be beneficial to the enhanced hardness and wear resistance of coatings with WC additions. The corrosion behavior of the tested samples in the 3.5 wt.% NaCl solution were investigated using electrochemical polarization measurements. The CoCrFeNi(WC) coatings all revealed the improved corrosion resistance. Especially, a 10 wt.% WC addition remarkably enhanced the comprehensive corrosion resistance and easy passivation of CoCrFeNi HEAC.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 2 ◽  
Author(s):  
Ya-Chu Hsu ◽  
Chia-Lin Li ◽  
Chun-Hway Hsueh

CoCrFeMnNiAlx (x = 0, 0.07, 0.3, 0.6, 1.0, 1.3) high-entropy alloy films (HEAFs) were processed by co-sputtering of CoCrFeMnNi alloy and Al targets. The effects of Al content on the microstructures and mechanical properties of HEAFs were studied. The XRD results indicated that the crystalline structure changed from the single face-centered cubic (FCC) phase for x = 0 and 0.07 to duplex FCC + body-centered cubic (BCC) phases for x = 0.3 and 0.6, and eventually, to a single BCC phase for x = 1.0 and 1.3, which agreed with the corresponding selected-area electron diffraction patterns. Also, nanotwins were observed in the FCC phase. Mechanical properties of films were studied using nanoindentation and micropillar compression tests. The hardness increased from 5.71 GPa at x = 0 to 8.74 GPa at x = 1.3. The compressive yield strength increased from 1.59 GPa to 3.73 GPa; however, the fracture strain decreased from 20.91% (no fracture) to 13.78% with the increasing Al content. Both nanotwins and BCC phase contributed to the strengthening effects for CoCrFeMnNiAlx HEAFs. Also, compared to the bulk CoCrFeMnNiAlx counterpart, the film exhibited much higher hardness and strength because of the much smaller grain size and the presence of nanotwins.


2020 ◽  
Vol 993 ◽  
pp. 1148-1154 ◽  
Author(s):  
Mi Na Zhang ◽  
Wen Tai Ouyang ◽  
Jun Ke Jiao ◽  
Wen Wu Zhang ◽  
Xiang Lin Zhou

AlCoCuFeNi high-entropy alloy coating was prepared by laser cladding with gas-atomized pre-alloy powders. The phase, microstructure and microhardness of HEA coating have been investigated. The results show that the AlCoCuFeNi coating was about ~ 800 μm in thickness, and the hard coating with strong metallurgical bonding to the substrate was obtained. The HEA coating is mainly composed of BCC dendrites phase and Cu-rich FCC phase within the interdendrite. The transition in structure from columnar to equiaxed grain can be observed in the coating due to the effect of different temperature gradient. The laser clad AlCoCuFeNi coating exhibited high microhardness of about 427.7 HV0.2, which was 2.5 times that of the 45# steel substrate.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2209 ◽  
Author(s):  
Xinyang Wang ◽  
Qian Liu ◽  
Yanbin Huang ◽  
Lu Xie ◽  
Quan Xu ◽  
...  

In this paper, CoCrFeNiTix high entropy alloy (HEA) coatings were prepared on the surface of Q235 steel by laser cladding. The microstructure, microhardness, and corrosion resistance of the coatings were studied. The mechanism of their corrosion resistance was elucidated experimentally and by first-principles calculations. The results show that CoCrFeNiTi0.1 adopts a face-centered cubic (FCC) phase, CoCrFeNiTi0.3 exhibits an FCC phase and a tetragonal FeCr phase, and CoCrFeNiTi0.5 adopts an FCC phase, a tetragonal FeCr phase, and a rhombohedral NiTi phase. The FCC phase, tetragonal FeCr phase, rhombohedral NiTi phase, and hexagonal CoTi phase are all observed in the CoCrFeNiTi0.7 HEA. The alloys assume the dendritic structure that is typical of HEAs. Ni and Ti are enriched in the interdendritic regions, whereas Cr and Fe are enriched in the dendrites. With increasing Ti content, the hardness of the cladding layers also increases due to the combined effects of lattice distortion and dispersion strengthening. When exposed to a 3.5 wt.% NaCl solution, pitting corrosion is the main form of corrosion on the CoCrFeNiTix HEA surfaces. The corrosion current densities of CoCrFeNiTix HEAs are much lower than those of other HEAs. As the Ti content increases, the corrosion resistance is improved. Through X-ray photoelectron spectroscopy (XPS) and first-principles calculations, the origin of the higher corrosion resistance of the coatings is connected to the presence of a dense passivation film. In summary, the corrosion resistance and mechanical properties of CoCrFeNiTi0.5 alloy are much better than the other three groups, which promotes the development of HEA systems with high value for industrial application.


2020 ◽  
pp. 2150037
Author(s):  
Xiaohong Zhan ◽  
Chaoqi Qi ◽  
Mengyao Wu ◽  
Lijun Liu ◽  
Zhuanni Gao

High-entropy alloys (HEAs) have shown considerable promise from both a scientific and an application perspective due to their outstanding comprehensive properties. In this study, an equiatomic FeCoCrNi HEA is used as input material for laser cladding on Ti-6Al-4V alloy. The HEA coating is characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) to investigate the bonding region, element distribution and microstructure evolution. The results show that the HEA coating is mainly composed of face-centered cubic (FCC) phase and body-centered cubic (BCC) phase, precipitating a small amount of (Fe, Cr)-rich phase and (Ni, Ti)-rich phase. Otherwise, the bonding region, which is between coating and substrate, is emphatically concerned in this paper. The bonding region is formed by the convection zone which is resulted from the density difference of HEA and TC4. In addition, the convection in molten pool plays a key role in the morphology of bonding region.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850100 ◽  
Author(s):  
Rui-Feng Zhao ◽  
Bo Ren ◽  
Guo-Peng Zhang ◽  
Zhong-Xia Liu ◽  
Jian-Jian Zhang

The CrCuFeMnNi high entropy alloy (HEA) powder was synthesized by mechanical alloying. The effects of milling time and subsequent annealing on the structure evolution, thermostability and magnetic property were investigated. After 50[Formula: see text]h of milling, the CrCuFeMnNi HEA powder consisted of a major FCC phase and a small amount of BCC phase. The crystallite size and strain lattice of 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were 12[Formula: see text]nm and 1.02%, respectively. The powder exhibited refined morphology and excellent chemical homogeneity. The supersaturated solid solution structure of the as-milled HEA powder transformed into FCC1, FCC2, a small amount of BCC and [Formula: see text] phase in annealed state. Most of the BCC phase decomposed into FCC (mainly FCC2 phase) and [Formula: see text] phases, and the dynamic phase transition was almost in equilibrium at 900[Formula: see text]C. The saturated magnetization and coercivity force of the 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were respectively 16.1[Formula: see text]emu/g and 56.2[Formula: see text]Oe.


Sign in / Sign up

Export Citation Format

Share Document