scholarly journals Batch Electrocoagulation Treatment of Peat Water in Sarawak with Galvanized Iron Electrodes

2020 ◽  
Vol 997 ◽  
pp. 127-138
Author(s):  
Nazzeri Abdul Rahman ◽  
Nur Afifah Tomiran ◽  
Aiman Hakim Hashim

Peat water is an abundant water resource in Sarawak where some of the coastal areas in Sarawak still utilize peat water for domestic usage. Peat water contains natural organic matters especially humic substances which include humic acids. Humic acids contribute to the brown color of peat water and can cause diseases such as stomach cancer, blackfoot disease and etc. if consumed by human. Electrocoagulation is an alternative to conventional water treatment methods which have the advantages of being environmental friendly, minimal sludge production and no addition of chemical substances. The aims of this study are to fabricate a desktop scale electrocoagulation system with galvanised iron electrodes and to investigate the effects of the operating parameters such as inter-electrode distance, applied current density, number of electrodes, and treatment time on peat water in the system. The performance of batch electrocoagulation system in term of their removal efficiency of several parameters such as total organic carbon (TOC), chemical oxygen demand (COD), color and turbidity are evaluated. Through experimental tests conducted, this system successfully removes 98.44% of COD, 92.02% of TOC, 97.92% of turbidity and 99.91% of color by using galvanized iron as an electrode at current density of 25 A/m2in 30 minutes with 10 galvanized iron electrodes. Despite the fact that there is a small amount of iron ions and zinc ions remained in the treated peat water which are 0.001mg/l and 0.0442mg/l respectively, these concentrations are far below the standard limits imposed by Malaysia Ministry of Health (MOH). Generally, all the parameters studied meet the standard limit imposed by MOH except for total organic carbon. This is particularly due to the improper filtration system adopted in this study. The total operating costs for 252 in 30 minutes treatment time of 10 electrode plates is RM 8.75 per . Overall, the study have successfully designed a batch electrocoagulation system to treat peat water by using galvanized iron for domestic usage.

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3784 ◽  
Author(s):  
Violetta Kozik ◽  
Krzysztof Barbusinski ◽  
Maciej Thomas ◽  
Agnieszka Sroda ◽  
Josef Jampilek ◽  
...  

The potential implementation of Envifer®, a commercial product containing potassium ferrate (40.1% K2FeO4), for the purification of highly contaminated tannery wastewater from leather dyeing processes was proposed. The employment of the Taguchi method for optimization of experiments allowed the discoloration (98.4%), chemical oxygen demand (77.2%), total organic carbon (75.7%), and suspended solids (96.9%) values to be lowered using 1.200 g/L K2FeO4 at pH 3 within 9 min. The application of the central composite design (CCD) and the response surface methodology (RSM) with the use of 1.400 g/L K2FeO4 at pH 4.5 diminished the discoloration, the chemical oxygen demand, the total organic carbon, and suspended solids within 9 min. The Taguchi method is suitable for the initial implementation, while the RSM is superior for the extended optimization of wastewater treatment processes.


2013 ◽  
Vol 821-822 ◽  
pp. 480-483
Author(s):  
Wei Li Zhou ◽  
Wei Ding ◽  
Jie Kuang ◽  
Long Chen ◽  
Jin Jun Li

The decolorization of Orange II in goethite/UV system was investigated. It was discovered that the optimum condition is: pH=3, [α-FeOOH]=0.5 g/L, [Orange II]=10 mg/L. Furthermore, the absorption of Orange II on goethite, and the effect of pH values, goethite dosage and carboxylate on the decolorization were investigated. The decolorization efficiency was 90% after 6h irradiation when the concentration of pyruvic acid was 1.0mmol/L, α-FeOOH concentration was 0.3 g/L, and Orange II concentration was 10 mg/L at pH 3.0. Besides, total organic carbon (TOC) and chemical oxygen demand (COD) were determined, and a possible reaction mechanism was prompted as well.


2010 ◽  
Vol 61 (10) ◽  
pp. 2557-2561 ◽  
Author(s):  
M. K. Vilve ◽  
M. E. T. Sillanpää

This paper presents a summary of degrading organic compounds of nuclear laundry water by ozonation in different conditions of pH, hydrogen peroxide and ultraviolet radiation. The degradation of organic compounds was analysed by chemical oxygen demand (COD), total organic carbon (TOC) and biochemical oxygen demand (BOD). The optimal degradation conditions were at pH 7 with ozone, UV radiation and hydrogen peroxide addition. The transfer of ozone increased significantly, thus resulting in decreased treatment time compared to ozone treatment alone. The reductions of COD, TOC and BOD were 46%, 32% and 70%, respectively.


2013 ◽  
Vol 726-731 ◽  
pp. 1699-1703
Author(s):  
Lin Lin Huang ◽  
Jun Feng Liu ◽  
Bin Sun ◽  
Nan Zhang ◽  
Yong Qing Tang ◽  
...  

Papermaking wastewater effluent from a biological processing unit was treated by an advanced treatment method-electrochemical oxidation process. The experiments were carried out in an electrochemical reactor using RuO2\SnO2 coated on titanium as anode and stainless steel as cathode. The changes of Chemical Oxygen Demand (COD) reduction and other relative parameters have been determined as a function of treatment time and applied current density. The optimum reaction time and current density was 60min and 5mA/cm2, respectively. Results indicate that as an advanced treatment method, electrochemical oxidation can treat papermaking wastewater to achieve the standard of effluents effectively.


2020 ◽  
Vol 9 (12) ◽  
pp. e11491210556
Author(s):  
Mariana Lopes Bastos ◽  
Joel Marques da Silva ◽  
Silvânio Silvério Lopes da Costa ◽  
Joel Alonso Palomino-Romero

In this work, an electroflotation (EF) method for the treatment of poultry slaughterhouse effluent was proposed, and its efficiency in reducing chemical oxygen demand (COD) was investigated. The following operating conditions were optimized through Doehlert design: [Al2(SO4)3], pH, treatment time, and current density. Treatment of the effluent was carried out in a reactor with TiO2–RuO2 (anode) and iron (cathode) electrodes. The optimum process conditions were obtained with a pH 9, current density of 60 A m–2, electrolysis time of 80 min, and [Al2(SO4)3] of 1.8 mg L–1. Under these operating conditions, turbidity, COD, and biochemical oxygen demand (BOD) removal efficiencies of 93.1%, 80.7%, and 89.7%, respectively, were obtained. The operating cost of the process was calculated at 0.9 USD per m³. The EF method combined with chemical coagulation was shown to be a suitable process for the treatment of effluent from the slaughter and processing of poultry.


1994 ◽  
Vol 30 (10) ◽  
pp. 179-187 ◽  
Author(s):  
I. T. Miettinen ◽  
P. J. Martikainen ◽  
T. Vartiainen

Transformations in the amount and quality of organic matter (humus) during bank filtration of surface water were studied by analyzing the changes in total organic carbon (TOC), non-purgeable organic carbon (NPOC), chemical oxygen demand (COD), color of water, and UV absorbing humus fractions. The amount of organic matter expressed as TOC, NPOC, and COD depended on temperature and filtration distance from lake water. The color of water and the UV absorbing humus peaks presenting different humus molecule fractions decreased more effectively than other parameters measuring the amount of organic matter in water. The ratio of COD to TOC decreased when the filtration distance of water increased. Our observations indicated that bank filtration of humus-rich lake water changed more the quality of organic matter than its total amount.


2018 ◽  
Vol 78 (12) ◽  
pp. 2542-2552 ◽  
Author(s):  
Seval Yılmaz ◽  
Emine Esra Gerek ◽  
Yusuf Yavuz ◽  
Ali Savaş Koparal

Abstract We present electrocoagulation (EC) treatment results of vinegar industry wastewater (VIW) using parallel plate aluminum and iron electrodes, and analyze the toxicity of the treatment processes. Due to the chemical complexity of vinegar production wastewater, several parameters are expected to alter the treatment efficiency. Particularly, current density, initial pH, Na2SO4 as support electrolyte, polyaluminum chloride (PAC) and kerafloc are investigated for their effects on chemical oxygen demand (COD) removal. Following several treatment experiments with real wastewater samples, aluminum-plate electrodes were able to reach to a removal efficiency of 90.91% at pH 4, 10 mg/L PAC and an electrical current density of 20.00 mA/cm2, whereas iron-plate electrodes reached to a removal efficiency of 93.60% at pH 9, 22.50 mA/cm2 current density. Although EC processes reduce COD, the usefulness of the system may not be assessed without considering the resultant toxicity. For this purpose, microtox toxicity tests were carried out for the highest COD removal case. It was observed that the process reduces toxicity, as well as the COD. Consequently, it is concluded that EC with aluminum and iron electrodes is COD removal-wise and toxicity reduction-wise a plausible method for treatment of VIW, which has high organic pollutants.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 53-59 ◽  
Author(s):  
URSULA FILLAT ◽  
M. BLANCA RONCERO ◽  
ALEXANDRE BASSA ◽  
VERA MARIA SACÓN

In this study, we examined the effect of treating eucalyptus pulp with various commercial xylanases to identify the most effective enzyme for use under the industrial bleaching conditions used at the Jacareí mill of the Brazilian firm Fibria, which include a high pH and temperature. Based on the results, the use of two of the nine enzymes studied reduced the kappa number by 1.5 units, increased brightness by 2.5% ISO, and decreased hexenuronic acids (HexA) content by more than 10 μmol/g relative to a control treatment in the absence of enzyme. The most marked changes in brightness were observed on application of an oxidative D stage to enzyme-treated pulp samples. Finally, the chemical oxygen demand (COD), total organic carbon (TOC), color, and turbidity of the effluents obtained at the end of the processes involving the enzymes were all higher than in the control process.


Sign in / Sign up

Export Citation Format

Share Document