scholarly journals Green Synthesis of Silver Nanoparticles Using Local Honey

Nano Hybrids ◽  
2013 ◽  
Vol 4 ◽  
pp. 87-98 ◽  
Author(s):  
Haroon Haiza ◽  
A. Azizan ◽  
Aizat Hazwan Mohidin ◽  
D.S.C. Halin

In this work, silver nanoparticles have been successfully prepared with a simple, cost-effective and reproducible aqueous room temperature green synthesis method. Honey was chosen as the eco-friendly reducing and stabilizing agent replacing most reported reducing agents such as hydrazine, sodium borohydride (NaBH4) and dimethyl formamide (DMF) which are highly reactive chemicals but also pose a biological risk to the society and environment. The size and shape of silver nanoparticles were modulated by varying the honey concentration and pH of the aqueous solution that contain silver nitrate as the silver precursor, sodium hydroxide as the pH regulator and ethylene glycol as the solvent. The silver nanoparticles obtained are characterized by field-emission scanning electron microscope (FESEM), ultraviolet-visible spectra (UV-Vis) and Fourier transform infrared spectroscopy (FTIR). From SEM analysis, it was found that by increasing the concentration of honey, the size of silver nanoparticles produced decreased, from the range of 18.98 nm - 26.05 nm for 10 g of honey to 15.63 nm - 17.86 nm for 40 g of honey. Similarly, the particle size decreased as the pH of the aqueous solution increased. UV-Vis spectra revealed large anisotropic and polydispersed Ag nanoparticle were produced.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
María del Carmen Sánchez-Navarro ◽  
Claudio Adrian Ruiz-Torres ◽  
Nereyda Niño-Martínez ◽  
Roberto Sánchez-Sánchez ◽  
Gabriel Alejandro Martínez-Castañón ◽  
...  

Nanomaterials obtained by green synthesis technologies have been widely studied in recent years owing to constitute cost-effective and environmental-friendly methods. In addition, there are several works that report the simultaneous performance of the reducer agent as a functionalizing agent, modifying the properties of the nanomaterial. As a simple and economical synthesis methodology, this work presents a method to synthesize silver nanoparticles (AgNPs) using Annona muricata aqueous extract and functionalized with 5-fluorouracil (5-FU). The processes of reduction, nucleation, and functionalization of the nanoparticles were analyzed by UV-Vis absorption spectroscopy, and it was found that they are the function of the contact time of the metal ions with the extract. The structural characterization was carried out by transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD). The antibacterial properties of the synthetized nanomaterials were tested using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli growth.


Author(s):  
Pintu Pandit ◽  
MD Teli ◽  
Gayatri T Nadathur ◽  
Saptarshi Maiti ◽  
Kunal Singha ◽  
...  

Sterculia foetida fruit shell was used for the green synthesis of silver nanoparticles. Optimized reduction of silver ion (Ag+) to metallic silver nanoparticles (Ag˚) was carried out at room temperature for 16hr. The reduced silver nanoparticles were characterized by UV-visible spectroscopy, particle size analyzer, FTIR and SEM analysis of treated cotton fabric not only showed superb coloration but also proven to be very good in antibacterial and ultraviolet protection properties even after ten washes.


Biomedicine ◽  
2020 ◽  
Vol 39 (4) ◽  
pp. 544-549
Author(s):  
G. K. Pratap ◽  
Manjula Shantaram

Introduction and Aim: The silver nanoparticles have attained a special place in the area of nanotechnology because of their different biological applications. Fabrication of nanoparticles using green synthesis is  done because of its wide applications in different fields such as biomedical, medicine, agriculture and food engineering. This study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using leaf extracts of the medicinal plant. Materials and Methods: The medicinal plants are rich sources of various medicinal properties. Olea dioica Roxb., leaf extract was used to investigate the effects of Ag-NPs having antibacterial activity and antioxidant capacity.  The plant leaf extract contains flavonoids, alkaloids, saponins, and phenolic compounds which acts as reducing and stabilizing agents. The green synthesized silver nanoparticles were characterized by various techniques like UV- visible spectrophotometer, FTIR spectroscopy, and SEM analysis. Results: The synthesis of sliver nanoparticles from plant source, and analysis of nano particles by UV-Vis spectra, SEM and FTIR. The biological evaluations of Ag-NPs indicated an excellent inhibitory efficacy, antioxidant and antimicrobial activity for their future applications in medicine. Conclusion: The synthesized silver nanoparticles exhibited potent antioxidant and antimicrobial activities against Gram-positive and Gram-negative bacteria. The silver (Ag-NPs) nanoparticles synthesized by the pot green synthesis method proves its potential use in various medical applications. Keywords: Silver nanoparticles; Medicinal plants; Ag-NPs; Olea dioica Roxb.,


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14624-14631
Author(s):  
Pablo Eduardo Cardoso-Avila ◽  
Rita Patakfalvi ◽  
Carlos Rodríguez-Pedroza ◽  
Xochitl Aparicio-Fernández ◽  
Sofía Loza-Cornejo ◽  
...  

Gold and silver nanoparticles were synthesized at room temperature using an aqueous extract from dried rosehips acting as reducing and capping agents with no other chemicals involved.


1975 ◽  
Vol 28 (3) ◽  
pp. 673 ◽  
Author(s):  
DJ Collins ◽  
C Lewis ◽  
JM Swan

Treatment of cyclododecane-r-1,c-5,c-9-triyl tris(p-toluenesulphonate) with sodium azide in dimethyl-formamide at 100� for 6 h gave the corresponding cis,cis-triazide which upon hydrogenation or reduction with lithium aluminium hydride gave cyclododecane-r-1,c-5,c-9-triamine, isolated as the tris-salicylidene derivative. Acid hydrolysis of this, removal of the salicylaldehyde, and treatment of the aqueous solution with sodium carbonate and 2,3-dimethoxybenzoyl chloride gave r-1,c-5,c- 9-tris(2,3-dimethoxybenzamido)cyclododecane. ��� Treatment of (E,E,E)-cyclododeca-1,5,9-triene with an excess of acetonitrile and sulphuric acid at room temperature for three days gave 18% of (E,E)-1-acetamidocyclododeca-4,8-diene; no di- or tri-amides were isolated.


2017 ◽  
Vol 6 (5) ◽  
Author(s):  
Zahra Abbasi ◽  
Sholeh Feizi ◽  
Elham Taghipour ◽  
Parinaz Ghadam

AbstractSilver nanoparticles (AgNPs) have widespread applications. Recently, the synthesis of NPs using plant extract has attracted much attention. In this study, with an easy and rapid process at room temperature, AgNPs were produced by the aqueous extract of dried


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Saravana Periaswamy Sivagnanam ◽  
Adane Tilahun Getachew ◽  
Jae Hyung Choi ◽  
Yong Beom Park ◽  
Hee Chul Woo ◽  
...  

AbstractThe aim of this work was to acquire even and sphere-shaped silver nanoparticles (AgNPs) using statistical design of experiment. AgNPs were produced by green synthesis method using deoiled


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. El-Sheikh

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


Sign in / Sign up

Export Citation Format

Share Document