Development of Aluminum-Lithium Alloys Processed by the Rheo Container Process

2006 ◽  
Vol 116-117 ◽  
pp. 513-517 ◽  
Author(s):  
Roger Sauermann ◽  
Bernd Friedrich ◽  
T. Grimmig ◽  
M. Buenck ◽  
Andreas Bührig-Polaczek

This investigation describes the development and evaluation of thixoformable alloys on Al-Li-Mg basis in the scope of the collaborative research center SFB 289 at RWTH Aachen University. Scandium and zirconium was added to Al-Li2.1-Mg5.5 (A1420) with the aid of DoE (Design of Experiments) and precursor billets were manufactured by pressure induction melting (PIM). To evaluate the thixoformability of the synthesized alloys high-quality semi solid processed demonstrators were manufactured by the Rheo-Container-Process. Subsequent heat treatment raised the mechanical properties to maximum values of tensile strength of 432MPa, yield strength of 220MPa and an elongation of 13%. The RCP-Process was designed for the special requirements of this high reactive alloy. The paper will present extraordinary benefits in terms of properties and process simpleness for the semi-solid processing of Al-Li alloys.

2019 ◽  
Vol 85 (7) ◽  
pp. 28-35
Author(s):  
Aleksey A. Skupov ◽  
Aleksey V. Scherbakov ◽  
Svetlana V. Sbitneva ◽  
Eva A. Lukina

The use of rare earth elements for alloying of aluminum alloys is a promising direction nowadays — filler materials doped with rare earth metals (REM) improve the mechanical properties of welded joints of high-strength aluminum-lithium alloys compared to serial filler material. The results of studying the effect of the composition of alloyed filler materials Sv1209 and Sv1221 and heat treatment mode on the mechanical properties and structure of welded joints of high-strength aluminum-lithium alloys B-1461 and B-1469 are presented. It is shown that the use of filler materials alloyed with rare earth metals in combination with full heat treatment (quenching and artificial aging) carried out after welding provide an increase in the strength characteristics of the welded joint to the level of strength of the base material with sufficiently high ductility and toughness. Metallographic study of welded joints after heat treatment revealed a fine-grained structure in the center of welds attributed to alloying of the filler with REM. Transmission electron microscopy is used to study precipitated hardening phases in welded joints. The round-shaped phase Al3(Sc, Zr) and a fine δ’-phase precipitated upon cooling of the welded joint are present in weld adjacent zone of V-1469 alloy. At the same time, artificial aging after welding results in formation of copper-containing Ω’- and θ’-phases. Quenching and artificial aging of the welded joint resulted in an increase in the size of precipitated hardening T1’-, S’-, θ’-phases and density of their distribution in the grain volume in the heat-affected zone of V-1461 alloy. Thus, heating upon welding leads to uneven phase precipitation, whereas additional artificial aging aggravates the non-uniformity of decomposition through partial dissolution of some phases and coarsening of the other.


1986 ◽  
Vol 17 (4) ◽  
pp. 635-643 ◽  
Author(s):  
J. M. Papazian ◽  
R. L. Schulte ◽  
P. N. Adler

2015 ◽  
Vol 1125 ◽  
pp. 190-194
Author(s):  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Kyung Ju Min ◽  
Ho Sung Lee

It is well known that the significant weight reduction and increased strength have placed advanced aluminum-lithium alloys at the forefront of aerospace materials research. For example the use of aluminum-lithium based alloys for rocket fuel tank domes can reduce weight because aluminum-lithium alloys have lower density and higher strength than Al-Cu alloy 2219. However, Al-Li alloys have been shown the inherent low formability characteristic that make them susceptible to cracking during the spinning operations. In this study a novel heat treatment process on the formability of friction stir welded Al-Li alloy blanks are presented. It is shown that the successful heat treatment process has been developed with superior mechanical properties and currently the patent is applied.


2001 ◽  
Author(s):  
James M. Fragomeni

Abstract The effect of variations in microstructure as a consequence of heat treating and aging on the mechanical properties of aluminum-lithium alloys was studied. The thermal treatments and composition were correlated to the microstructure and subsequent mechanical behavior of aluminum-lithium and aluminum-lithium-copper alloys that were solution heat treated and artificially aged for a series of aging times and temperatures. The underaged, peak-aged, and overaged thermal heat treatments were considered in determining the effect of the microstructure and processing on the mechanical properties. Standard ASTM tensile testing of the alloys was performed to determine mechanical properties such as yield strength, ductility, and ultimate tensile strength. Quantitative microscopy of the intermetallic precipitates was performed to related the measured deformation behavior to the microstructural features. Thus, the intermetallic precipitates in the microstructure which impede dislocation motion and control the precipitation strengthening response as a function of aging practice were measured by quantitative methods, and are the basis for controlling the mechanical behavior depending on their size distribution, average size, and interparticle spacing. The microstructure was studied, and measurements were made to determine the size, distribution, and morphology for the intermetallic strengthening precipitates as a function of the processing and composition. For the aluminum-lithium alloys studied, the primary strengthening was a direct consequence of ordered coherent Al3Li intermetallic precipitates which were uniformly distributed throughout the microstructure, which restricted the glide motion of dislocations during plastic deformation.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050261
Author(s):  
Yingwu Wang ◽  
Xiaoqing Zuo ◽  
Songjiang Ran ◽  
Yushun Ye ◽  
Jihua Tian

The effects of semi-solid extrusion temperature change, extrusion pressure, SiC content and T5 heat treatment on the microstructure, mechanical properties, and wear resistance of SiC particle strengthened high aluminum zinc-base alloy [Formula: see text] composites were studied. The results show that semi-solid extrusion broke the dendrites of [Formula: see text] composites, refined their grain structure, and improved particle aggregation. The density, hardness, yield strength, tensile strength and elongation of [Formula: see text] composites first increased and then decreased when the extrusion temperature and SiC content increased, and also increased when the extrusion pressure rose. The optimal extrusion temperature, pressure and SiC content are 475[Formula: see text], 15 MPa and 10 wt.%, respectively. T5 heat treatment further refined the crystalline grains and promoted [Formula: see text] and [Formula: see text] to precipitate as strengthening phases, which improve the mechanical properties and wear resistance of [Formula: see text] composites. Consequently, the hardness, yield strength, tensile strength and elongation of the heat-treated composites improved by 18.99%, 9.66%, 4.93% and 9.76%, respectively. The wear loss of the heat-treated composites reduced by 31.65% under a load of 1600 N and a rotational speed of 200 r/min compared with the as-cast composites.


2008 ◽  
Vol 273-276 ◽  
pp. 536-541 ◽  
Author(s):  
Arash Rezaei ◽  
Shahram Ahmadi ◽  
Ali Shokuhfar ◽  
I. Foroutan

Aluminum-Lithium alloys were developed as major replacements for existing aluminum alloys to reduce the weight of aircraft and aerospace structures. Mechanical properties of Al-Li alloys greatly depend on solidification conditions. Other than reducing the microsegregation, homogenization treatment has other effects on the microstructure of Al-Li ingots. In this research, effects of homogenization treatment at constant temperature (500°C) on the precipitation in the microstructure of Al-1Li-3Cu-0.1Zr (wt %) and Al-2Li-3Cu- 0.1Zr (wt %) specimens have been investigated. Results show that homogenization at 500°C for 24 hours not only increases the hardness and phases precipitating in grain but also reduces microsegregation of Fe in grain boundaries.


2012 ◽  
Vol 11 (2) ◽  
Author(s):  
Koos Sarjono

Steel represents a metallic material which is still dominantly used in the engineering industry and mechanical construction. In order to fulfil the industrial demand, the high quality and mechanical properties of steel has to be always available.It is necessary to conduct a heat-treatment process to identify the improvement of mechanical properties and microstructure of steel JIS G 4051 grade S 45 C .Results of the heat-treatment process indicate that the maximum tensile strength of the investigated steel is 1074 MPa , it is earning from the warm-up temperature 860 °C and the highest hardness of the investigated steel is 579 HV it is earning from the warm-up temperature 920 °C . These results meet to AISI – SAE 1045 or JIS G 4051 grade S 45 C standard.


Sign in / Sign up

Export Citation Format

Share Document