The Characteristic Evaluation of Hydroxyapatite Powders Synthesized from CaCO3 Refined from Oyster Shell and H3PO4

2006 ◽  
Vol 118 ◽  
pp. 639-644
Author(s):  
Hye Sung Kim ◽  
Su Chak Ryu

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) powders is synthesized using the mixed powders of CaCO3 refined from oyster shells and phosphoric acid (H3PO4-98%, Daejung) as starting materials. The characteristic evaluation and chemical analysis of the synthesized powders is performed by X-ray diffraction (XRD), Fourier-transformed infra-red spectroscopy (FT-IR), and inductively-coupled plasma atomic emission spectroscopy (ICPAES). XRD analysis of synthetic powder by heat treatment at 1300°C for 2hrs shows only HAp peaks corresponding to stoichiometric HAp. It is confirmed by ICP-AES test that impurities such as Zn, In, Ti, Ba, Cd, Pb, and Mn, is not detected at all, but small amounts of Ti and Be is observed (0.099ppm Ti and 0.002ppm Ba). Variation of bone density is measured by giving medication of HAp powder with drinking water into human body continuously for three month. After the medication, the bone density is higher than the medication before. This means that HAp powder made from this process can be used as improver of bone density.

Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2018 ◽  
Vol 32 (10) ◽  
pp. 1850119
Author(s):  
Chunrui Liu ◽  
Li Dai ◽  
Luping Wang ◽  
Yu Shao ◽  
Zhehua Yan ◽  
...  

Zr:Yb:Tm:LiNbO3 crystals with various [Li]/[Nb] ratios (0.946, 1.05, 1.20 and 1.38) were grown by the Czochralski technique. Distribution coefficients of Zr[Formula: see text], Yb[Formula: see text] and Tm[Formula: see text] ions were analyzed by the inductively coupled plasma-atomic emission spectrometer (ICP-AES). The influence of [Li]/[Nb] ratio on the composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals was investigated by X-ray diffraction and IR transmission spectrum. The results show that as the [Li]/[Nb] ratio increases in the melt, the distribution coefficients of Yb[Formula: see text] and Tm[Formula: see text] ions both increase while that of Zr[Formula: see text] ion deceases. When the [Li]/[Nb] ratio increases to 1.20 in the melt, Zr:Yb:Tm:LiNbO3 crystal is nearly stoichiometric. In addition, when the [Li]/[Nb] ratio reaches up to 1.38, Nb[Formula: see text] are completely replaced and Li[Formula: see text] starts to impel the Zr[Formula: see text], Yb[Formula: see text] and Tm[Formula: see text] into the normal Li sites.


2018 ◽  
Vol 281 ◽  
pp. 564-569
Author(s):  
Ya Ming Wang ◽  
Yong Fa Song ◽  
Shun Lan Deng ◽  
Osaka Akiyoshi ◽  
Guang Xin Wang ◽  
...  

Anatase-type titanium dioxide oxide layer was formed on the surface of titanium alloy by chemical oxidation. 0.9 um thick anatase was obtained by soaking in a mixed solution of a certain proportion of hydrogen peroxide and hydrochloric acid and then heat treatment. The surface morphology, phase structures and composition of oxide layers were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Thickness of titania coating was measured by the ball pit gauge. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to detect the change of Ca ion and P ion concentration in solution. The results showed that anatase layers deposited apatite within 4 days accompanying the decrease of pH when soaked in simulated human body fluid (SBF). Ion exchange between the negative ions and calcium ions in SBF is proposed as the mechanism operative to favor the deposition on apatite.


2015 ◽  
Vol 749 ◽  
pp. 30-35 ◽  
Author(s):  
Asiah Abdullah ◽  
Wan Elina Faradilla Wan Khalid ◽  
Siti Zaubidah Abdullah

Bi3Ni2Ta3O14 pyrochlores and related materials were prepared by solid state reaction at sintering temperatures ranging from 900°C to 1150°C. The BNT cubic pyrochlores could be represented by a general formula Bi3Ni2-xTa3O14-x and phase pure sample was obtained at temperature 1050°C with x = 0.6. This was confirmed by X-ray diffraction analysis and detailed lattice refinement. The single phase material crystallized in a cubic system, space group Fd3m with a = b = c = 10.5134 Å, α = β = γ = 90o, respectively. The sample was further characterized using a combination of techniques including Fourier-Transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), thermogravimetric analysis (TGA) and inductively coupled plasma – atomic emission spectrometry (ICP-AES). The material was thermally stable without any thermal events being observed. Electrical properties of the single phase material were studied by ac impedance spectroscopy starting from room temperature to 800 oC over a frequency range of 5 Hz to 13 MHz. The phase formation and solid solutions of cubic pyrochlores in the Bi2O3-NiO-Ta2O5 (BNT) ternary system were studied thoroughly via combination of characterization techniques.


2019 ◽  
Vol 14 (3) ◽  
pp. 198-212
Author(s):  
Ferian Anggara ◽  
Mutiara Cikasimi ◽  
Basuki Rahmat ◽  
Sigit Arso Wibisono ◽  
Rita Susilawati

Batubara telah menjadi salah satu sumber alternatif unsur-unsur tanah jarang (UTJ) seiring dengan meningkatnya permintaan terhadap kebutuhan unsur-unsur tersebut. Kondisi geologis spesifik menyebabkan pengayaan konsentrasi UTJ pada batubara. Keterdapatan lapisan tipis material vulkanik (tonstein) pada Lapangan Batubara Muara Tiga Besar Utara, Formasi Muara Enim, Cekungan Sumatera Selatan menjadi salah satu indikasi terdapatnya pengayaan UTJ. Penelitian dilakukan menggunakan metode petrografi sayatan poles, analisis-analisis X-Ray Diffraction (XRD), proksimat, dan geokimia; Inductively Coupled Plasma-Mass/Atomic Emission Spectroscopy (ICP-MS/AES). Analisis geokimia menunjukkan pola distribusi UTJ didominasi oleh tipe UTJ Berat (Heavy Rare Earth Elements, HREE). Plot diagram nilai Coutl dan REOash menunjukkan prospek pengayaan UTJ termasuk ke dalam daerah prospek. Pola distribusi UTJ dan anomali redox sensitive dan redox non-sensitive menunjukkan tipe genetik pengayaan UTJ adalah tufaan. Pengayaan UTJ terjadi oleh proses pencucian alkaline tonstein yang terendapkan pada fase penggambutan dalam pembentukan batubara.


2016 ◽  
Vol 80 (6) ◽  
pp. 977-983 ◽  
Author(s):  
C. H. Yoder ◽  
N. T. Landes ◽  
L. K. Tran ◽  
A. K. Smith ◽  
J. D. Pasteris

AbstractCarbonated calcium apatites doped with a monovalent cation (Li+, Na+, or K+) or a divalent cation (Mg2+ or Zn2+) were prepared in aqueous solution and analysed by powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy and infrared spectroscopy. The hypothesis that the location of carbonate in the apatite structure, either in place of hydroxide ions in the c-axis channels (A-type substitution) or in place of phosphate (B-type substitution), is affected by the solution energetics of the cation (specifically its enthalpy of hydration) was strengthened by the observation of larger amounts of Atype carbonate in apatites containing the monovalent cations in aqueous solution. It is shown that cations with low negative enthalpies of hydration favour A-type substitution, whereas cations with higher negative hydration enthalpies, such as divalent cations (Mg2+, Zn2+), favour B-type substitution.


Soil Research ◽  
2014 ◽  
Vol 52 (6) ◽  
pp. 554 ◽  
Author(s):  
Ke Yin ◽  
Hanlie Hong ◽  
Gordon Jock Churchman ◽  
Zhaohui Li ◽  
Wen Han ◽  
...  

The clay mineralogy and formation of hydroxy-interlayered vermiculite (HIV) in the Jiujiang red earth sediments were investigated using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and inductively coupled plasma-atomic emission spectrometer (ICP-AES) analyses. The 1.4-nm peak of HIV did not change after Mg2+ saturation and glycol solvation, but it exhibited partial collapse to 1.0 nm after K+ saturation followed by heat treatment at successively higher temperatures. HIV was also characterised by FTIR adsorption bands at ~3485 cm–1 and ~3415 cm–1, which did not change with increasing temperature. DSC analysis revealed that the dehydroxylation of hydroxides in the interlayer of HIV began at ~400°C, and a further dehydroxylation was confirmed by the XRD of the sample heated to ~600°C. The ICP-AES analysis of sodium citrate extracts showed that the Al concentration was higher than that of Fe, indicating that the Al was probably present as hydroxy-Al in the interlayer of HIV. The presence of hydroxy-Al polymers in the interlayer influenced both expandability and thermal properties of HIV clays from Jiujiang red earth sediments.


2012 ◽  
Vol 727-728 ◽  
pp. 80-84 ◽  
Author(s):  
Eliner Affonso Ferreira ◽  
J.M. Serra ◽  
Julio César Serafim Casini ◽  
Hidetoshi Takiishi ◽  
Rubens Nunes de Faria Jr.

The microstructure and electrochemical properties of a La0.7Mg0.3Al0.3Mn0.4Co0.5Ni3.8 hydrogen storage alloy have been studied. The anode was prepared using a mixture of the ingot alloy in the as-cast state with carbon black and polytetrafluoroethylene (PTFE) as a binder. A Ni (OH)2 electrode was used as the cathode of the square-type test cell. A separator was used together with a 6M KOH electrolyte. Microstructure and phase composition of the alloy have been investigated using inductively coupled plasma atomic emission spectrometry (ICP-AES), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD). A niobium-containing alloy has also been included for a comparison.


2018 ◽  
Vol 96 (8) ◽  
pp. 803-809
Author(s):  
Khaled Boughzala ◽  
Ali Bechrifa ◽  
Fethi Kooli ◽  
Nabil Fattah ◽  
Khaled Bouzouita

Barium–lanthanum britholite solid solutions, Ba10-xLax(PO4)6-x(SiO4)xF2, with 0 ≤ x ≤ 6 were prepared by solid state reaction in the temperature range of 1200–1400 °C. The powders were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), F-selective electrode, X-ray diffraction (XRD), and Fourier transform infrared (FTIR). In addition, the present study used thermal analysis to follow the apatite formation reaction during the heat treatment. For x ≤ 3, there is formation of a single apatite phase, whereas above this value, the La2SiO5, La2Si2O7, BaSi2O5, and Ba2La2O5 secondary phases were observed. The variation of the lattice parameters of the apatite phase as a function of x confirmed that the solid solution is discontinuous to either side of x = 3.


2011 ◽  
Vol 239-242 ◽  
pp. 2488-2491
Author(s):  
Hui Juan Ren ◽  
De Hui Sun ◽  
Zhen Feng Cui ◽  
Guang Yan Hong

The europium(III)-benzoic acid(HL)-1,10-phenanthroline(phen) complex was synthesized in the ethanol-H2O system by a precipitation method. The morphology of the minicrystal complex with diameters of ca. 1.0 µm is characterized by scanning electron microscopy (SEM). Elemental analysis and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) are used to determine the chemical composition of the complex. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) are used to examine the structure of the complex. The results show that the complex is a new kind of crystalline complex and the composition of the complex is speculated to be EuL3(phen). The thermogravimetric curve (TGA) analysis indicates that the complex is stable below 232 °C in air. The photoluminescence analyses (PLA) exhibit that the complex emits the characteristic red fluorescence of Eu (III) ions at 613nm under ultraviolet light excitation.


Sign in / Sign up

Export Citation Format

Share Document