Mechanical Spectroscopy Investigation of Liquid Pb-Bi Alloys

2012 ◽  
Vol 184 ◽  
pp. 434-439 ◽  
Author(s):  
Roberto Montanari ◽  
Alessandra Varone

Liquid Pb–Bi eutectic alloy has been selected as coolant and neutron spallation source for the development of MYRRHA, an accelerator driven system. The alloy has been characterized in liquid state from melting (125 °C) to 650 °C by mechanical spectroscopy. Experiments have been carried out using hollow reeds of austenitic stainless steel filled with the Pb-Bi alloy and sealed at the extremities. From 350 °C to 520 °C modulus shows a remarkable drop accompanied by a broad internal friction maximum. In the same temperature range radial distribution functions, determined from X-ray diffraction patterns, evidenced variations of the mean distance between the 1st nearest neighbour atoms. The anelastic phenomena have been attributed to a structural re-arrangement of liquid metal. For comparison, other alloys of the Pb-Bi system with hypo-eutectic composition have been investigated.

2012 ◽  
Vol 706-709 ◽  
pp. 878-883 ◽  
Author(s):  
Paolo Deodati ◽  
Franco Gauzzi ◽  
Roberto Montanari ◽  
Alessandra Varone

Liquid Pb–Bi eutectic (LBE) alloy has been selected as coolant and neutron spallation source for the development of MYRRHA, an accelerator driven system (ADS). The alloy has been characterized in liquid state from melting (125 °C) to 750 °C by mechanical spectroscopy, i.e. internal friction (IF) and dynamic modulus measurements. The experiments have been carried out using hollow reeds of austenitic stainless steel filled with Pb-Bi alloy and sealed at the extremities. Dynamic modulus showed a remarkable drop in the range 350-520 °C. In the same temperature range radial distribution functions (RDFs), determined from X-ray diffraction patterns, evidenced variations of the mean distance between the 1st nearest neighbour atoms. The phenomenon has been explained as a structural re-arrangement of atoms in the liquid metal.


2014 ◽  
Vol 922 ◽  
pp. 785-790
Author(s):  
Santosh Balijepalli ◽  
Saulius Kaciulis ◽  
Matteo Amati ◽  
Roberto Montanari ◽  
Alessandra Varone

Liquid Pb–Bi eutectic (LBE) alloy is of great interest as coolant and neutron spallation source for the accelerator driven systems (ADS). Scanning Photoemission Microscopy (SPEM) at the ELETTRA synchrotron radiation facility of Trieste was carried out on samples quenched from melt at different temperatures. SPEM analyses show that the two components (Pb and Bi) are not homogeneously distributed in the range of temperature from melting up to 518 °C, in particular they form clusters enriched in Pb and Bi. The cluster size decreases as temperature increases hence diffusion occurs between clusters and matrix leading to the progressive disgregation of clusters that is almost completed at 518 °C. Such micro-chemical evolution is accompanied by a structural change of the liquid evidenced by the results of High-temperature X-ray Diffraction (HT-XRD). In particular, radial distribution function (RDF) curves show a progressive change of the ratio between the shell radii of 1st and 2nd nearest neighbours.


1975 ◽  
Vol 30 (6-7) ◽  
pp. 801-805 ◽  
Author(s):  
Y. Waseda ◽  
K. Yokoyama ◽  
K. Suzuki

Abstract X-ray diffraction patterns have been measured on molten alkaline earth metals (Mg, Ca, Sr, and Ba) in the temperature range from the melting points to 880 °C. In all cases the structure factors obtained were temperature insensitive. By the usual Fourier transformation of the structure factors, the atomic radial distribution functions were evaluated. From these the interatomic distances and coordination numbers were estimated. The structural information was applied to a discussion of the electron-transport properties using the Ziman theory.


1961 ◽  
Vol 5 ◽  
pp. 94-103 ◽  
Author(s):  
H. F. Quinn ◽  
P. Cherin

AbstractMagnesium oxide crystallites having mean dimensions in the range of 25–1000 A can be prepared by controlled thermal decomposition of the carbonate.Following some earlier investigations of Birks and Friedman, we have determined the mean size and size distribution of several such MgO samples from the broadened X-ray diffraction lines which they exhibit. Contrary to the procedure of the above investigators, the harmonic analysis due to Stokes has been used to correct for instrumental broadening and values of mean-size and size-distribution functions obtained from the Fourier coefficients by the methods of Warren and Averbach.The results obtained are compared with average sizes and distributions obtained by direct examination of the samples in an electron microscope.A composite sample has been prepared by mixing known quantities of the sample previously studied. The distribution function obtained by harmonic analysis of one diffraction line of the composite sample is compared with the function calculated from the distributions of its components.Conclusions are drawn concerning the significance of the results obtained by the Warren technique: in particular, the average sizes obtained by this method are compared with those given by the approximate method used by Birks and Friedman.


1983 ◽  
Vol 38 (2) ◽  
pp. 231-236 ◽  
Author(s):  
E. Kálmán ◽  
I. Serke ◽  
G. Pálinkás ◽  
M. D. Zeidler ◽  
F. J. Wiesmann ◽  
...  

Abstract Electron, neutron and X-ray diffraction patterns of liquid formamide have been measured at a temperature of 25 °C. Analysis of the diffraction data yields the molecular structure and the average geometry of the hydrogen bond. The molecular parameters obtained from liquid diffraction experiments are in good agreement with those from gas electron diffraction for the free molecule. The mean O…N and O…H hydrogen bond distances are 2.9 Å and 1.9 Å, respectively. Four H-bonds per molecule are found on the average. The deviation of the H-bonds from the linearity is estimated.


1997 ◽  
Vol 501 ◽  
Author(s):  
R. Pielaszek ◽  
S. Stel'Makh ◽  
M. Aloshina ◽  
S. Gierlotka ◽  
B. Palosz

ABSTRACTGrain size and strain distribution functions of polycrystals of SiC with nanosize grains were examined based on X-ray diffraction data and ab initio calculations of scattered intensity from Debye functions. A tentative model of distribution of strain induced under high isostatic pressure in nanoparticles with different grain size is presented. Nanocrystalline SiC powders with grains down to 80Å in diameter were examined. In situ high pressure diffraction experiments were performed in cubic anvil cell MAX80 (up to 6 GPa) and in Diamond Anvil Cell (DAC) (up to 45 GPa) at HASYLAB, Hamburg, Germany. Shape of the Bragg lines was analysed with the use of two methods: (i) calculation of theoretical diffraction patterns based on modeling of one-dimensional disordering and ab initio calculation of scattered intensity starting from Debye functions and, (ii) approximation of the experimental shape of Bragg reflections by a combination of two functions: Gaussian (G) and Lorentzian (L).


1985 ◽  
Vol 62 ◽  
Author(s):  
R. Pelton ◽  
P. Moine ◽  
M. A. Noack ◽  
R. Sinclair

ABSTRACTTi-Ni alloys have been made amorphous over a broad composition range by sputter deposition, ion implantation and electron irradiation. Structural analysis of these alloys was made by electron diffraction techniques. Microdensitometer traces of diffraction patterns produced scattering profiles from which radial distribution functions (RDF's) were derived. The results from this analysis were comparable to those from x-ray diffraction studies on similar alloys. It was found that the positions of the intensity maxima vary systematically with alloy composition. However, values of coordination number were less precise due to experimental uncertainties. Furthermore, no dramatic differences were observed in the RDF's of the samples amorphized by the three techniques.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
William F. Tivol ◽  
Murray Vernon King ◽  
D. F. Parsons

Feasibility of isomorphous substitution in electron diffraction is supported by a calculation of the mean alteration of the electron-diffraction structure factors for hemoglobin crystals caused by substituting two mercury atoms per molecule, following Green, Ingram & Perutz, but with allowance for the proportionality of f to Z3/4 for electron diffraction. This yields a mean net change in F of 12.5%, as contrasted with 22.8% for x-ray diffraction.Use of the hydration chamber in electron diffraction opens prospects for examining many proteins that yield only very thin crystals not suitable for x-ray diffraction. Examination in the wet state avoids treatments that could cause translocation of the heavy-atom labels or distortion of the crystal. Combined with low-fluence techniques, it enables study of the protein in a state as close to native as possible.We have undertaken a study of crystals of rat hemoglobin by electron diffraction in the wet state. Rat hemoglobin offers a certain advantage for hydration-chamber work over other hemoglobins in that it can be crystallized from distilled water instead of salt solutions.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


Sign in / Sign up

Export Citation Format

Share Document