The Expeimental Setup for Measuring of Thermal Parameters of Magnetic Fluids in AC Magnetic Field

2014 ◽  
Vol 215 ◽  
pp. 454-458 ◽  
Author(s):  
Tatiana M. Elkhova ◽  
Yurii K. Gun'ko ◽  
Alexander P. Pyatakov ◽  
Yurii I. Spichkin ◽  
Kenneth Dawson ◽  
...  

Magnetic nanoparticle heating in alternating magnetic field is the novel approach to the hyperthermia technique for cancer treatment. The accurate measuring of the specific heat absorption rate of the magnetic fluid is the critical issue in the search for efficient materials to minimize the concentration of the magnetic nanoparticles in human tissues. In this work the heat absorption measurement setup consisting of a system of the magnetic field generation, a temperature measuring system, a cooling system, and an external computer control system has been developed. The results of the calibration as well as the results of measurements on the cobalt ferrite nanoparticles are presented.

2011 ◽  
Vol 121-126 ◽  
pp. 2541-2545
Author(s):  
Ru Ting Xia ◽  
Shun Ichi Doi

This paper introduces the application method of a measuring system for visual judgment ability of drivers in real three-dimension space (3D) based on the visual attention theory. The measuring system can simulate the traffic environment and driving conditions, and is made up of five parts, signal display system, data recording system, traffic environment simulation system, experimental seat and computer control system. It can control the peripheral environment illuminance and the appearance of stimulus at the target locations, and change the colour of stimulus. The paper demonstrated that the measuring system can be used to examine the reaction time and judgment response of drivers in real three-dimension space during driving, and show that the response ability training for visual attention of drivers can improve the vision judgment ability.


2021 ◽  
Vol 3 (1) ◽  
pp. 106-113
Author(s):  
V Chyhin ◽  

The possibility of creating a computer control system for an unmanned aerial vehicle using remote cloud computing according to predefined scenarios from the user's desktop is investigated. For this, an experimental setup was created, which includes a quadcopter, a personal computer with the Windows operating system, an on-board computer Raspberry-3 with the Linux operating system, a Pi Camera V2 camcorder, and a Pixhawk autopilot. To model the control and transmission of video images the own control programs and photo pursuit on a computer Raspberry-3 in Python are recorded. Based on the obtained results, a model of unmanned aerial vehicle control from the desktop of the user's personal computer via the on-board computer without the use of a standard control panel and operator is proposed.


2021 ◽  
Vol 288 ◽  
pp. 01004
Author(s):  
Regina Khazieva ◽  
Maksim Ivanov

The aim of the work is to develop a device design for creating constant magnetic fields and select its parameters, select an electrical circuit for powering the device and determine how the energy efficiency of the device changes with an increase in its overall dimensions. When solving the problem, the KOMPAS-3D three-dimensional modeling system was used, the magnetic field induction was calculated using the Pascal ABC programming system, the optimal device parameters were selected using the Microsoft Excel program. Calculations have shown that the coefficient taking into account the inhomogeneous distribution of the magnetic field in the device is 0.883. The optimum ratio between the height and the radius of the cylinder, along which the emulsion flows, is h = r √ 20 hr. Using the KOMPAS-3D three-dimensional modeling system, a model of the device under development was built taking into account the obtained relationships. When using a circuit with an uncontrolled rectifier and autotransformer, the power consumed by the device is 2.67 times lower than the power consumed by the device when using a circuit with a controlled rectifier and a transformer. Energy efficiency increases significantly with the increase in device performance.


Author(s):  
Kenneth S. Vecchio ◽  
John A. Hunt

In-situ experiments conducted within a transmission electron microscope provide the operator a unique opportunity to directly observe microstructural phenomena, such as phase transformations and dislocation-precipitate interactions, “as they happen”. However, in-situ experiments usually require a tremendous amount of experimental preparation beforehand, as well as, during the actual experiment. In most cases the researcher must operate and control several pieces of equipment simultaneously. For example, in in-situ deformation experiments, the researcher may have to not only operate the TEM, but also control the straining holder and possibly some recording system such as a video tape machine. When it comes to in-situ fatigue deformation, the experiments became even more complicated with having to control numerous loading cycles while following the slow crack growth. In this paper we will describe a new method for conducting in-situ fatigue experiments using a camputer-controlled tensile straining holder.The tensile straining holder used with computer-control system was manufactured by Philips for the Philips 300 series microscopes. It was necessary to modify the specimen stage area of this holder to work in the Philips 400 series microscopes because the distance between the optic axis and holder airlock is different than in the Philips 300 series microscopes. However, the program and interfacing can easily be modified to work with any goniometer type straining holder which uses a penrmanent magnet motor.


2018 ◽  
Author(s):  
Steve Wang ◽  
Jim McGinn ◽  
Peter Tvarozek ◽  
Amir Weiss

Abstract Secondary electron detector (SED) plays a vital role in a focused ion beam (FIB) system. A successful circuit edit requires a good effective detector. Novel approach is presented in this paper to improve the performance of such a detector, making circuit altering for the most advanced integrated circuit (IC) possible.


Author(s):  
Jochen Rau

Even though the general framework of statistical mechanics is ultimately targeted at the description of macroscopic systems, it is illustrative to apply it first to some simple systems: a harmonic oscillator, a rotor, and a spin in a magnetic field. These applications serve to illustrate how a key function associated with the Gibbs state, the so-called partition function, is calculated in practice, how the entropy function is obtained via a Legendre transformation, and how such systems behave in the limits of high and low temperatures. After discussing these simple systems, this chapter considers a first example where multiple constituents are assembled into a macroscopic system: a basic model of a paramagnetic salt. It also investigates the size of energy fluctuations and how—in the case of the paramagnet—these fluctuations scale with the number of constituents.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


Sign in / Sign up

Export Citation Format

Share Document