Semi-Solid Forging Process and Die Design in the Production of Aluminum Thin Plates

2014 ◽  
Vol 217-218 ◽  
pp. 151-158 ◽  
Author(s):  
Chul Kyu Jin ◽  
Chung Gil Kang

In this study, A356 aluminum thin plates (1.2 mm thick) are fabricated using the semi-solid forming process. Using the electromagnetic stirrer, A356-based semi-solid slurry is fabricated. The configuration of the thin die cavity for forging is designed using the fluid analysis of MAGMA software. The dimension of the thin plate is 150 x 150 x 1.2 mm. The semi-solid slurry with 45% solid fraction is created and then injected into the forging die at the 200-ton hydraulic press for compression. Thin plate with semi-solid slurry at 45% of the solid fraction (fs) is fabricated with punch speed of 300 mm/s and punch pressure of 200 MPa for compression the slurry. The formability, mechanical properties and microstructure of a formed thin plate sample are analyzed. As a result, a thin plate with 211.5 MPa of tensile strength and 8.5% of elongation can be formed.

Author(s):  
Yong Phil Jeon ◽  
Amir Bolouri ◽  
Hyung Yoon Seo ◽  
Jong Deok Kim ◽  
Chung Gil Kang

The latest trend in the cell phone component industry to use aluminium and magnesium alloys has resulted in the advanced processing technologies. Semi-solid forming process that is advantageous for the mass production of thin parts with complex shapes have been of interest as a promising tool for near net-shape manufacturing. This study describes a semi-solid forming process for the development of a 1 mm-thick cell phone case by using the rheological material prepared by electromagnetic stirring equipment. Thus, a new type of die design for indirect rheoforging was proposed to efficiently control the primary α-Al phase particles in the thin part under rheological conditions. Their microstructure and mechanical properties were investigated and compared to parts produced without electromagnetic stirring. Those products fabricated by electromagnetic stirring had better mechanical properties and globular microstructures than those fabricated without electromagnetic stirring. Several processing parameters such as punch velocity (30 mm/s), punch pressure (75–250 MPa), stirring time (10 s), and solid fraction (0–20%) were used. The optimal condition that resulted in a defect-free component with the improved mechanical properties was explained and discussed.


2011 ◽  
Vol 264-265 ◽  
pp. 36-41 ◽  
Author(s):  
H.H. Kim ◽  
Chung Gil Kang

Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.


2006 ◽  
Vol 116-117 ◽  
pp. 441-444 ◽  
Author(s):  
Kenji Miwa ◽  
Rudi S. Rachmat ◽  
Takuya Tamura

We have developed new type semi-solid injection process, that is, runner-less injection process. In order to investigate the effects of solid fraction on microstructure and casting defects of AZ91D in new type semi solid injection process, semi-solid forming testing machine which has the same system as a runner-less injection machine has been made on an experimental basis. Its temperature controlling system has been established to obtain the homogeneous solid-liquid coexisted state in its injection cylinder. AZ91D billets are injected into a permanent mold by this machine in the semi-solid state. A shearing in the part of nozzle of injection cylinder is the most important to reveal thixotropic property of alloy slurry in semi solid forming process by injection machine. So it needs controlling of solid fraction to affect thixotropic property. In order to decrease casting defects and hold homogeneous structure, solid fraction more over 50% is needed. But when the solid fraction increases more than 50%, primary solid particles grow coarser, and then controlling method is required to suppress coarsening. In the case of less than 50% of solid fraction, liquid part preferentially fills inside the permanent mold and alloy slurry continue to fill the mold behind alloy liquid. Then large casting defects form at the boundary of both flows.


2011 ◽  
Vol 189-193 ◽  
pp. 3852-3856
Author(s):  
Fei Han ◽  
Wei Wei Wang ◽  
Shou Jing Luo ◽  
Zhi Ming Du

The impeller is an important component applied in airplanes, ships and weapons. It is difficult to form the complicated geometry of the impeller by using the conventional forging and casting technology. Semi-solid forming is a promising forming process that can produce complicated and high-quality components of wrought aluminum alloys. In this paper, the formability of the impeller was investigated by using advanced semi-solid forming technology and self-designed combined die, as well as quick forging hydraulic press. Experimental results show that the formability of the impeller increases with the increase of reheating temperature and holding time of the billet. When heating temperature and holding time during the pretreatment of the billet were 620°C and 25 min respectively, reheating temperature and holding time of the billet before thixoforging were 600°C and 90 min respectively, preheating temperature of the die was 320°C , the impeller was formed perfectly on the quick forging hydraulic press.


Author(s):  
M.R. Mohamad Kamal ◽  
N.F. Bazilah ◽  
N.F. M. Pzil ◽  
M.H. Idris ◽  
M.S. Salleh ◽  
...  

Thixoforming is a promising metal forming process to produce near net-shape components with high casting quality. Thixoforming of metallic alloy utilizes the thixotropic behaviour of the material with near globular or globular microstructure in the semi-solid condition. The solid content is between 50% to 70% before forming. In this paper, the effect of plunger speed and a solid fraction on an alternator housing was investigated by advance casting simulation software. The 3D CAD model of the alternator housing was created using SolidWorks software and AnyCasting software is utilized for the simulation of the thixoforming parameter and magnesium alloy (AZ91D) is the material used. The simulation had been done by varying the plunger speed, temperature (solid fraction) of the material, and both Power Law and Bingham Viscosity model are used in the simulation to identify the defect prediction at the end. The simulation result shows that laminar filling in semi-solid slurry able to achieved by controlling the plunger speed and temperature. Slower speed and lower melt temperatures are preferable in thixoforming. Therefore, a solid fraction of the material, plunger speed, and solidification rate do influence the filling behaviour of the casting of semi-solid metal.


2012 ◽  
Vol 557-559 ◽  
pp. 2155-2158
Author(s):  
Ping Wang ◽  
Liang Li

Free-wheel hub plays an important role in automobile starter system, so there is higher quality requirement on geometry and precision. In order to improve the efficiency and comprehensive functions of the part, according to the features of the lower part with involute small module internal helical spline, the rotary forming technology was put forward, and the forming process was simulated by the DEFORM-3D software. In the die design, the use of rotary punch made the process of rotary forming achieved in common hydraulic press, and can serve as an important reference to the design of forming process and die structure of similar part.


2006 ◽  
Vol 129 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Gap-Yong Kim ◽  
Muammer Koç ◽  
Rhet Mayor ◽  
Jun Ni

One of the major challenges in simulation of semi-solid forming is characterizing the complex behavior of a material that consists of both solid and liquid phases. In this study, a material model for an A356 alloy in a semi-solid state has been developed for high solid fractions (>0.6) and implemented into a finite element simulation tool to investigate the micro-/mesoscale feature formation during the forming process. Compared to previous stress models, which are limited to expressing the stress dependency on only the strain rate and the temperature (or the solid fraction), the proposed stress model adds the capability of describing the semi-solid material behavior in terms of strain and structural evolution. The proposed stress model was able to explain the strain-softening behavior of the semi-solid material. Furthermore, a simulation model that includes the yield function, the flow rule, and the stress model has been developed and utilized to investigate the effects of various process parameters, including analysis type (isothermal vs nonisothermal), punch velocity, initial solid fraction, and workpiece shape (“flat” versus “tall”) on the micro-/mesofeature formation process.


2012 ◽  
Vol 192-193 ◽  
pp. 404-409 ◽  
Author(s):  
W.M. Mao ◽  
Z.Z. Chen ◽  
H.W. Liu ◽  
Y.G. Li

The semi-solid slurry of A356 aluminum alloy was prepared through a serpentine pouring channel, which is a new method proposed recently for semi-solid forming process, and the effect of pouring temperature and bend number in the channel on the slurry microstructure was investigated and the slurry was finally rheo-die cast. The results show that when the pouring temperatures are between 640oC and 680oC, the slurry of A356 aluminum alloy with spherical primary a-Al grains can be prepared under the given conditions. The more the bend numbers in the channel are, the better the slurry is, i.e. the primary a-Al grains are more spherical and finer. The results also show that the as-cast ultimate strength and elongation of the rheo-die castings can reach 250MPa and 8.613.2% respectively. After T6 heat treatment, the ultimate strength and elongation of the rheo-die castings can reach 320MPa and 8.011.3% respectively. The work undertaken demonstrates eventually that the serpentine pouring channel process is a good method for semi-solid rheo-die casting or rheo-forming of metallic materials, the process is simple and the slurry cost is not expensive.


Sign in / Sign up

Export Citation Format

Share Document