Microstructure Evolution and Coarsening Mechanism of 7075 Semi-Solid Aluminum Alloy Pre-Deformed by ECAP Method

2016 ◽  
Vol 256 ◽  
pp. 294-300 ◽  
Author(s):  
Jin Long Fu ◽  
Yu Wei Wang ◽  
Kai Kun Wang ◽  
Xiao Wei Li

To investigate the influence of refined grains on the microstructure of 7075 aluminum alloy in semi-solid state, a new strain induced melting activation (SIMA) method was put forward containing two main stages: pre-deformation with equal channel angular pressing (ECAP) method and isothermally holding in the semi-solid temperature range. The breaking up and growth mechanisms of the grains and kinetics of equiaxed grains coarsening during the semi-solid holding were investigated. The results showed that the average grain size after ECAP extrusion decreased significantly, e.g., microstructure with average globular diameter less than 5μm was achieved after four-pass ECAP extrusion. Obvious grain coarsening had been found during isothermal holding in the semi-solid state and the roundness of the grains increased with the increasing holding time. The proper microstructure of 66.8μm in diameter and 1.22 in shape factor was obtained under proper soaking condition (at 590°C for 15 min). Two coarsening mechanisms, namely, coalescence in lower liquid fraction and Ostwald ripening in higher liquid fraction contributed to the grain growth process.

2010 ◽  
Vol 33 ◽  
pp. 1-5
Author(s):  
Shi Kun Xie ◽  
Rong Xi Yi ◽  
Xiu Yan Guo ◽  
Xiao Liang Pan ◽  
Xiao Qiu Zheng

In semi-solid remelting process, the various stages of reheating temperature and isothermal holding time must be accurately controlled in order to obtain the uniformly distributed and small equiaxed grains microstructure. In this paper, a temperature control program was developed and the remelting process for Al-7Si-2RE aluminum alloy was carried out. The results showed that with the raise of reheating temperature and the extension of isothermal holding time, the liquid fraction increases, α-phase grain grows and becomes rounding in the process of Al-7Si-2RE alloy semi-solid remelting. The most reasonable process parameter of reheating temperature is at 585~590°C and its appropriate isothermal holding time are about 10~15min for the semi-solid Al-7Si-2RE alloy.


2019 ◽  
Vol 285 ◽  
pp. 234-239
Author(s):  
Yong Fei Wang ◽  
Sheng Dun Zhao ◽  
Chao Chen ◽  
Peng Dong ◽  
Peng Zhang

In this study, ZL104 aluminum alloy supplied in cold rolled state was introduced in recrystallization and partial melting (RAP) process to fabricate semi-solid billets. During the RAP process, samples cut from cold rolled ZL104 aluminum plate were heated to different semi-solid temperatures, and the effects of isothermal treatment parameters on the microstructures of semi-solid billets were investigated. Results showed that, with the increase of isothermal holding temperature and time, both the average grain size and the shape factor were increased. Namely, the shape of solid grain was more and more spherical, but the size of solid grain was larger and larger, which may be not suitable for semi-solid forming. The size of liquid droplets was increased while the number of liquid droplets was decreased with increasing the isothermal holding temperature and time. Microstructural coarsening of solid grain were attributed to coalescence and Ostwald ripening mechanisms, however, the latter one played a more and more important role with the increase of isothermal holding time and temperature. Additionally, The optimal isothermal holding temperature and time are 570 °C and 5 min, respectively, and the coarsening rate constant is 1357.2 μm3/s at 570 °C.


2014 ◽  
Vol 217-218 ◽  
pp. 29-36 ◽  
Author(s):  
Ju Fu Jiang ◽  
Zhi Ming Du ◽  
Ying Wang ◽  
Shou Jing Luo

In the present study, 7050 supplied in extruded state was heated to different temperatures below solidus or the semisolid state and microstructural evolution and coarsening were investigated. The results showed that complete recrystallisation only occurs after soaking for 5 minutes at 545°C, which is characterised by formation of a lot of fine equiaxed grains. RAP is suitable for fabricating high-quality semisolid billet of 7050 aluminum alloy with an average grain size ranging from 47.4 um to 70.5 um and a roundness ranging from 1.3 to 1.7. Grain growth occurs as the samples were soaked at 610°C and 615°Cfor prolonged soaking time. When the isothermal temperatures were 610°C and 615°C, the coarsening rate constants were 359.5μm3s-1 and 470.5μm3s-1, respectively, indicating an increase of coarsening rate constant (K) with the increasing isothermal temperature. Coarsening tends to occur via Ostwald ripening and coalescence. Ostwald ripening plays an important role during the whole coarsening process, but the grain coalescence only contributes to coarsening after soaking for 12 minutes. 625°C is an optimal temperature to keep cylinder shape of the sample due to collapse of the sample above this temperature, leading to difficult clamping.


2006 ◽  
Vol 116-117 ◽  
pp. 205-208 ◽  
Author(s):  
P. Babaghorbani ◽  
S. Salarfar ◽  
Mahmoud Nili-Ahmadabadi

Reheating process in the semi-solid state is a very important step in the thixoforming process. In this research semi-solid ductile cast iron and Al alloys (Al-2.5Si, Al356) prepared by inclined plate method, were reheated to examine the effect of reheating conditions on the microstructure and coarsening kinetics of the alloys. For ductile cast iron, solid fraction at different reheating temperatures and holding times was obtained and based on these results the optimum reheating temperature range was determined. In the case of Al alloys increase of holding time in the semi-solid state, leads to increase of liquid fraction, solid grain size and improvement of sphericity of solid particles. In addition, the results show that coarsening kinetics of microstructures of both alloys during reheating was diffusion controlled and can be mostly treated by Ostwald ripening theory.


2008 ◽  
Vol 584-586 ◽  
pp. 164-169 ◽  
Author(s):  
Krystof Turba ◽  
Premysl Malek ◽  
Edgar F. Rauch ◽  
Miroslav Cieslar

Equal-channel angular pressing (ECAP) at 443 K was used to introduce an ultra-fine grained (UFG) microstructure to a Zr and Sc modified 7075 aluminum alloy. Using the methods of TEM and EBSD, an average grain size of 0.6 1m was recorded after the pressing. The UFG microstructure remained very stable up to the temperature of 723 K, where the material exhibited high strain rate superplasticity (HSRSP) with elongations to failure of 610 % and 410 % at initial strain rates of 6.4 x 10-2 s-1 and 1 x 10-1 s-1, respectively. A strain rate sensitivity parameter m in the vicinity of 0.45 was observed at temperatures as high as 773 K. At this temperature, the material still reached an elongation to failure of 430 % at 2 x 10-2 s-1. These results confirm the stabilizing effect of the Zr and Sc additions on the UFG microstructure in a 7XXX series aluminum alloy produced by severe plastic deformation.


2020 ◽  
Vol 34 (33) ◽  
pp. 2050385
Author(s):  
Ye Wang ◽  
Maoliang Hu ◽  
Hongyu Xu ◽  
Zesheng Ji ◽  
Xuefeng Wen ◽  
...  

A typical Al–Cu–Mn–Ti aluminum alloy chip was adopted to prepare semi-solid billets by a Strain-Induced Melt Activation (SIMA) method, and the effects of isothermal process parameters on the semi-solid microstructure evolution of the alloy were investigated in this work. The result showed that semi-solid billets with highly spheroidal and homogeneous fine grains could be prepared from chips by the SIMA method. With the increase of isothermal temperature, the finer and near-spherical grains are obtained, the grains coarsen and became ellipse at 903 K because of the coarsening mechanisms of coalescence and Ostwald ripening. The relationship of isothermal holding time and grains size followed the LSW theory well, and more spherical microstructure can be brought by prolonging the holding time until 3000 s. Thus, the optimal isothermal treatment temperature is 893 K and holding time is 3000 s, the corresponding average size and roundness of grains are 137 [Formula: see text]m and 1.108, respectively.


2006 ◽  
Vol 116-117 ◽  
pp. 734-737 ◽  
Author(s):  
Alexander Schönbohm ◽  
Rainer Gasper ◽  
Dirk Abel

The aim of the paper is to demonstrate a control scheme by which it is possible to reproducibly reheat steel billets into the semi-solid state. Usually a heating program is used to reheat the billet into the semi-solid state. Our experiments showed that this control scheme leads to varying semi-solid fractions from one experiment to the next. To gain information about the billet’s state its temperature is often used since there is a known relationship between the temperature and the liquid fraction. Direct measurement of the temperature via thermocouples is not feasible in a production environment, therefore a radiation pyrometer has been used as a contact-less measurement device. The accuracy of the pyrometer depends heavily on the exact knowledge of the radiation coefficient, which can vary from billet to billet due to different surface properties and which is subject to change during the heating process. These uncertainties prohibit the implementation of a closed-loop control scheme since the exact temperature cannot be measured with the required accuracy. In order to be independent of the measurement errors the proposed control scheme only relies on the slope of the temperature. By detecting the distinct change of slope which occurs when the solidus temperature is crossed, the beginning of the melting process can be determined. The energy fed to the billet from this point onward determines the resulting liquid fraction. By detecting the entry into the solidusliquidus interval and then feeding the same amount of energy to each billet, it is guaranteed that the billet reaches the desired liquid fraction even by uncertain absolute value of the temperature and by small variations of the alloy composition. For the experiments the steel alloy X210 has been used and measurement data demonstrate the feasibility of the proposed control scheme.


2006 ◽  
Vol 510-511 ◽  
pp. 362-365 ◽  
Author(s):  
Young Ok Yoon ◽  
Hyung Ho Jo ◽  
Jin Kyu Lee ◽  
Dong In Jang ◽  
Shae K. Kim

Thixoextrusion, one of the thixoforming processes, has advantages of high productivity, reduction of the extrusion pressure, extension of the die life, and cost saving owing to its low energy consumption compared with the conventional extrusion processes. Especially, thixoextrusion process is expected to be very effective for hard-to-form materials with high strength. The present study focuses on 7075 Al wrought alloy to investigate the potential industrial applications of the thixoextrusion process. The microstructural evolution of 7075 Al wrought alloy for thixoextrusion was investigated with respect to isothermal holding temperature and time in the partially remelted semisolid state. The results showed that the liquid fraction increased with increasing isothermal holding temperature and time while the average grain size was inversely proportional to isothermal holding temperature and time up to 5min. However, there was no big change of liquid fraction and average grain size with respect to isothermal holding temperature and time. The important fact that the liquid fraction and average grain size were almost uniform after 5 min holding time is considered very useful for thixoextrusion in terms of process control.


2012 ◽  
Vol 504-506 ◽  
pp. 345-350 ◽  
Author(s):  
Adriana Neag ◽  
Véronique Favier ◽  
Mariana Pop ◽  
Eric Becker ◽  
Régis Bigot

The deformation behavior of semi-solid aluminum alloy is strongly dependent on the microstructure. This paper illustrates several experimental research works concerning thixoextrusion of 7075 aluminum alloy which was carried out at “Arts et Métiers ParisTech” of Metz. Inductive re-heating of the aluminum billet is the method used in order to obtain the target liquid fraction for thixoextrusion. To minimize the heat losses, a sample obtained from a direct extruded bar is inserted in a die for reheating in semisolid state and thixoextrusion. During the experimental re-heating process, the temperature was directly controlled by using thermocouples for temperature measurements in the sample and also in the die. The influence of different working ram speeds and reheating temperature on the microstructure evolution was studied by optical microscopy. The experimental results on extrusion load and microstructure evolution of the component are reported.


Sign in / Sign up

Export Citation Format

Share Document