Surface Modification of Poly(Lactic Acid) Microspheres via Gamma Irradiation

2017 ◽  
Vol 264 ◽  
pp. 128-131 ◽  
Author(s):  
Zahroh Hasanah Augustini Ninaya ◽  
Zuratul Ain Abdul Hamid

Irradiation technique is one of methods used in modification of polymer surface although it has been used in sterilization for decades. It allows establishing simple and compact technique, non-contaminated with residues of toxic initiators, crossing agents or other additives. This study is to evaluate the effects of different gamma (γ) irradiation doses on poly (lactic acid) (PLA) microsphere surface grafted with maleic anhydride (MAH). Source of γ-irradiation used is 60Co and dose irradiation used in this study is10, 30, 50, 70, 90 and 110 kGy. Characterization was performed on samples before and after irradiation by FTIR, SEM and DSC. Results of FTIR suggest maleic anhydride successfully grafted onto PLA microsphere. Data from DSC shows thermal property of PLA changed after irradiation where the crystallization is increased compared to neat PLA. SEM images showed the difference of the PLA microspheres before and after γ irradiation. Neat PLA microspheres had a smooth surface, while after irradiation, the surface become rough. Degradation of microspheres observed by SEM as in suggest that PLA microspheres is degrade by bulk degradation. Gamma irradiation not only modified the surface of PLA microspheres by successfully grafting the maleic anhydride and increase surface roughness, it also affected the bulk properties of PLA microspheres.

1979 ◽  
Vol 44 (12) ◽  
pp. 3632-3643 ◽  
Author(s):  
Karel Mach ◽  
Igor Janovský ◽  
Karel Vacek

Total yields of paramagnetic species, their optical bleaching and thermal annealing in acetic, propionic, a-butyric, isobutyric, and pivalic acid γ-irradiated at 77 K were followed by ESR spectroscopy. Radical anions, always found after irradiation, disappear during optical bleaching without formation of any paramagnetic product. During thermal annealing they are converted almost quantitatively into the α-radicals of the respective acid, with the exception of pivalic acid. Amounts of radical anions were estimated from the difference of integrated ESR spectra taken before and after optical bleaching. The results show that approximately equal amounts of the reduction and oxidation paramagnetic products of the γ-irradiation can be detected.


2021 ◽  
pp. 096739112110576
Author(s):  
Ying Zhou ◽  
Can Chen ◽  
Lan Xie ◽  
Xiaolang Chen ◽  
Guangqiang Xiao ◽  
...  

In this work, novel plasticizing biodegradable poly (lactic acid) (PLA) composites were prepared by melt blending of jute and tung oil anhydride (TOA), and the physical and mechanical properties of PLA/jute/TOA composites were tested and characterized. The impact strength of PLA/jute/TOA composites significantly increases with increasing the content of TOA. The SEM images of fracture surface of PLA/jute/TOA composites become rough after the incorporation of TOA. In addition, TOA changes the crystallization temperature and decomposition process of PLA/jute/TOA composites. With increasing the amount of TOA, the value of storage modulus (E′) of PLA/jute/TOA composites gradually increases. The complex viscosity (η*) values for all samples reduce obviously with increasing the frequency, which means that the pure PLA and PLA/jute/TOA composites is typical pseudoplastic fluid. This is attributed to the formation of crosslinking, which restricts the deformation of the composites.


Polymers ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 623 ◽  
Author(s):  
Jun Du ◽  
Youyong Wang ◽  
Xinfeng Xie ◽  
Min Xu ◽  
Yongming Song

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Bo Wang ◽  
Yujuan Jin ◽  
Kai’er Kang ◽  
Nan Yang ◽  
Yunxuan Weng ◽  
...  

AbstractIn this study, a type of epoxy-terminated branched polymer (ETBP) was used as an interface compati- bilizer to modify the poly lactic acid (PLA)/poly(butylene adipate-co-butylene terephthalate) (PBAT) (70/30) blends. Upon addition of ETBP, the difference in glass transition temperature between PLA and PBAT became smaller. By adding 3.0 phr of ETBP, the elongation at break of the PLA/PBAT blends was found increased from 45.8% to 272.0%; the impact strength increased from 26.2 kJ·m−2 to 45.3 kJ·m−2. In SEM analysis, it was observed that the size of the dispersed PBAT particle decreased with the increasing of ETBP content. These results indicated that the compatibility between PLA and PBAT can be effectively enhanced by using ETBP as the modifier. The modification mechanism was discussed in detail. It proposes that both physical and chemical micro-crosslinking were formed, the latter of which was confirmed by gel content analysis.


2011 ◽  
Vol 332-334 ◽  
pp. 317-320 ◽  
Author(s):  
Hui Qin Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and Poly(lactic acid) (PLA) were prepared via an electrospinning process. The surface morphology, thermal properties and crystal structure of PLA/PANI-DBSA nanofibers are characterized using Fourier transform infrared spectroscopy (FT-IR), wide-angle x-ray diffraction (WAXD) and scanning electron microscopy (SEM). SEM images showed that the morphology and diameter of the nanofibers were affected by the weight ratio of blend solution.


2009 ◽  
Vol 277 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Victor H. Orozco ◽  
Witold Brostow ◽  
Wunpen Chonkaew ◽  
Betty L. López

2019 ◽  
Vol 39 (3) ◽  
pp. 248-253
Author(s):  
Gwo-Geng Lin ◽  
Yi-Hu Song ◽  
Chao-Tsai Huang ◽  
Marek Sipos ◽  
Zhaokang Tu

Abstract Blends of two biobased polymers, poly(lactic acid) and poly(trimethylene terephthalate) (PTT), were compatibilized with either maleic anhydride-grafted poly(ethylene-octene) (mPOE) or organically modified clay (Cloisite 30B). Dynamic rheological measurements revealed that the mPOE inclusion resulted in a four-fold increase in viscosity relative to the noncompatibilized blends. By loading 3 wt% Cloisite 30B, the storage moduli of the blends showed a distinct solid-like behavior and high complex viscosity in the low-frequency region, which can be interpreted by the reduced sizes of the PTT phase evidenced from the scanning electron microscopy (SEM) micrography. A temperature sweep of the viscosity of the blends starting from 180°C revealed that the existence of an unmelted PTT dispersed phase might impede the decline in viscosity with increasing temperature near the melting point of PTT. The introduced compatibilizers can restrict the temperature-dependent morphology evolution, and the use of the 3 wt% 30B clay can prohibit the morphology evolution during the temperature sweep.


Polymer ◽  
2019 ◽  
Vol 179 ◽  
pp. 121669 ◽  
Author(s):  
Talita R. Rigolin ◽  
Lidiane C. Costa ◽  
Tiago Venâncio ◽  
Bruno Perlatti ◽  
Sílvia H.P. Bettini

2000 ◽  
Vol 67 (1) ◽  
pp. 83-90 ◽  
Author(s):  
FERNANDA FONSECA ◽  
CATHERINE BÉAL ◽  
GEORGES CORRIEU

We have developed a method to quantify the resistance to freezing and frozen storage of lactic acid starters, based on measuring the time necessary to reach the maximum acidification rate in milk (tm) using the Cinac system. Depending on the operating conditions, tm increased during the freezing step and storage. The loss of acidification activity during freezing was quantified by the difference (Δtm) between the tm values of the concentrated cell suspension before and after freezing. During storage at −20 °C, linear relationships between tm and the storage time were established. Their slope, k, allowed the quantitation of the decrease in acidification activity during 9–14 weeks of frozen storage. The method was applied to determine the resistance to freezing and frozen storage of four strains of lactic acid bacteria and to quantify the cryoprotective effect of glycerol.


Sign in / Sign up

Export Citation Format

Share Document