Punching Resistance of Flat Slabs with Openings – Experimental Investigation

2018 ◽  
Vol 272 ◽  
pp. 41-46 ◽  
Author(s):  
Tomáš Augustín ◽  
Ľudovít Fillo ◽  
Jaroslav Halvonik ◽  
Marián Marčiš

Flat slabs are commonly used structures in contemporary architecture. Although their common use there is still problem in design of these structures. The openings adjacent to a column are often used for plumbing and such a position of the openings increases shear stresses in the flat slab near the column. This paper deals with experimental work focused on the punching shear resistance of the flat slab specimens with openings adjacent to column compared to the flat slab specimens without openings. The opening influence is determined experimentally and by using models for the assessment of punching resistance from relevant standards and codes. The material properties of concrete and reinforcing steel were obtained from the laboratory tests.

2020 ◽  
Vol 309 ◽  
pp. 216-221
Author(s):  
Simona Šarvaicová ◽  
Viktor Borzovič

This paper deals with both linear and non-linear analysis of shear forces distribution in the area near the supports of the flat slabs. With a cross-section ratio of cmax / cmin > 3, the main amount of the shear stress is concentrated near the column or wall corners bases. As a consequence of this phenomenon, it is necessary to reduce the control perimeter when evaluating the punching shear resistance of a flat slab. The fragments of the flat slabs with the thickness of 200 mm supported by a wall with various loading conditions were analyzed. The results according to the Eurocode 2 were compared to a non-linear shear resistance evaluation that was calibrated based on the results from the previous experiments. Based on thus evaluated punching shear resistances, the theoretical reduced control perimeter was determined and subsequently it was compared to design model Eurocode 2. The physical basis for determining reduced control perimeters is based on the shear force concentration near the support.


2017 ◽  
Vol 259 ◽  
pp. 232-237
Author(s):  
Lucia Majtánová ◽  
Jaroslav Halvonik ◽  
Ján Hanzel

Two ways how to determine maximum punching resistance of flat slabs with shear reinforcement are currently used. The first way is verification of the concrete strut capacity at the column periphery defined as VRd,max. The second limit is defined as kmax multiple of the punching shear resistance without shear reinforcement VRd,c. The values of kmax are proposed usually in between 1.4 and 2.0. Results of the experimental tests are presented in the paper that were focused on above mentioned limits, whether failure of the struts can precede any other form of punching failure that is limited by kmax*VRd,c. Two experimental slab samples reinforced with high amount of shear reinforcement that increased punching capacity above capacity of the concrete struts were tested together with two slab samples cast without shear reinforcement. Comparison has shown that punching resistance of flat slab with shear reinforcement has been 1.7 times higher than resistance without shear reinforcement. While some standards allow for use kmax value of 1.9 in this case. This indicates that limits based only on the kmax factors may overestimate actual maximum punching shear resistance.


2011 ◽  
Vol 14 (1) ◽  
pp. 180-196
Author(s):  
A M Elshihy ◽  
H A ShehabEldeen ◽  
O Shaalan ◽  
R S Mahmoud

2021 ◽  
Vol 226 ◽  
pp. 111319
Author(s):  
Marcus Ricker ◽  
Tânia Feiri ◽  
Konstantin Nille-Hauf ◽  
Viviane Adam ◽  
Josef Hegger

2020 ◽  
Vol 309 ◽  
pp. 246-251
Author(s):  
Mária Bolešová ◽  
Katarína Gajdošová ◽  
Marek Čuhák

The most used horizontal load-bearing systems in concrete buildings are flat slabs. The effective and economic reconstruction of a locally supported flat slab of an existing building creates a complex task. Shear stress arises near the column and it becomes critical in design with increasing slab slenderness and requires a more detailed calculation. Increasing in the shear resistance of the flat slab can be achieved in various ways. Each method brings different effectiveness, advantages and disadvantages. The most widely used methods of the reconstruction are the increase in the size of the column (therein increasing the control perimeter for displaying the shear stress), the increase in the thickness of the flat slab or reinforcing the slab with shear reinforcement. Bolts and screw anchors (using different mounting angles) can be used as shear reinforcement. Each mentioned reconstruction method should be subjected to numerical calculations and verification of its efficiency. The parametric study presented in this paper is focused on the reconstruction techniques and their verification according to various numerical models. The results from Eurocode 2, fib Model Code 2010 and the new generation of Eurocode 2 are compared to show the differences between them. The aim of this paper is to bring a demonstration of the reconstruction methods that will increase in the shear resistance of the locally supported flat slabs and trying to choose the most effective one.


Author(s):  
Nguyen Tuan Trung ◽  
Pham Thanh Tung

The paper presents a numerical study on the effects of opening size and location on punching shear resistance of flat slabs without drop panels and shear reinforcement using ABAQUS. The study proposes an ABAQUS model that is enable to predict the punching shear resistance of flat slabs with openings. The model is validated well with the experimental data in literature. Using the validated numerical model, the effects of opening size and location on the punching shear resistance of flat slabs are then investigated, and the numerical results are compared with those predicted by ACI 318-19 and TCVN 5574:2018. The comparison between experimental and numerical results shows that the ABAQUS model is reliable. The punching shear resistances calculated by ACI 318-19 and TCVN 5574:2018 with different opening sizes and locations are agreed well to each other, since the design principles between two codes now are similar.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Muhammad Zardi

The aim of the tests was to investigate the influence of concrete strength, the eccentricity of the column and the use of shear reinforcement in flat slabs on punching shear. The research specimens are 8 units of flat slabs. Flat slab size 1400 x 1400 mm2 with thickness of 120 mm. Flat slabs were connected with circular column with dimension 225 mm  of diameter and 200 mm of height. Flat slabs were made in to 2 variations of concrete strength, e.i. 30 MPa and 60 MPa, 2 variations of shear reinforcement, e.i. without shear reinforcement and with shear reinforcement and 2 variations of eccentricity that, e.i. without eccentricity and with eccentricity. Each treatment has 1 specimen. Each specimen has 6 cylinder specimens. Cylinder specimens used as a concrete strength control for main specimen (flat slab). The tests showed that the concrete strength had a strong influence on punching shear strength. This is shown by capacity increase of 42.78%; 54.00%; 46.59% and 0.02%. The value is ratio between the maximum load of the specimens with 60 MPa and 30 MPa at the same eccentricity and the same shear reinforcement. The eccentricity of column reduce the capacity of punching shear. This is shown by 3 specimens decrease in capacity of 3.70%; 36.75% and 7.30%. Only 1 specimen that increase in capacity of 9.27%. The value is ratio between the maximum load of the specimens with 40 mm eccentricity and 0 mm eccentricity at the same compressive strenght and the same shear reinforcement. The use of shear reinforcement does not always increase the punching shear capacity. There are 2 observations that increased capacity (52.07% and 65.37% at the centric load) and 2 observations decreased capacity (0.12% and 4.92% at the eccentric load). The value is ratio between the maximum load on the specimens using shear reinforcement with the specimens that do not use shear reinforcement at the same compressive strenght and the same eccentricity.The use of shear reinforcement increase punching shear capacity of flat slab at the centric load condition. The use of shear reinforcement decrease punching shear capacity of flat slab at the eccentric load condition.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Simona Šarvaicová ◽  
Viktor Borzovič

The paper deals with the loading test results of an experimental reinforced concrete flat slab fragment, which was supported by an elongated rectangular column. The slab specimens were 200 mm thick and were designed without any shear reinforcement. By experimentally obtained punching shear resistance, the accuracy of the standard design models for prediction punching resistance was compared. The results of the experiments were also compared with the results of a numerical non-linear analysis performed in the Atena program.


Sign in / Sign up

Export Citation Format

Share Document