Forming of the Structure and Functional Properties of the Precipitation-Strengthened CuNi2Si1 Alloy

2018 ◽  
Vol 275 ◽  
pp. 100-112
Author(s):  
Jarosław Konieczny ◽  
Zbigniew Rdzawski

The work presents the results on the structure of CuNi2Si1 copper alloy. The alloy was treated in two variants: supersaturation - aging (variant I) and supersaturation - cold rolling - aging (Variant II).The structure of the CuNi2Si1 alloyed copper were analyzed by high resolution transmission electron microscopy (HRTEM). The TEM investigation showed in the Cu matrix after applying cold rolling after solution heat treatment, during aging at 600°C, causes the Ni2Si phase occurrence immediately after the begin of aging. Cold rolling (50% reduction) of the CuNi2Si1 alloy after supersaturation changes the mechanism and kinetics of precipitation and provides possibilities for production of broader sets of functional properties.

2014 ◽  
Vol 794-796 ◽  
pp. 951-956 ◽  
Author(s):  
Jon Holmestad ◽  
Martin Ervik ◽  
Calin D. Marioara ◽  
John Charles Walmsley

The grain boundaries of a fibrous Al-Mg-Si-Cu alloy have been investigated with Transmission Electron Microscopy. The compositions have been mapped by Energy Dispersive X-ray Spectroscopy. The alloy has been aged for 12 hours at 155°C after solution heat treatment and is in a slightly underaged condition. The precipitates nucleated on the high angle grain boundaries are coarse, while the precipitates on the low angle grain boundaries are smaller and more numerous. The precipitates on both types of grain boundaries has been identified as Q'-type. Copper is segregated to both the low and high angle grain boundaries. The effect of this segregation will be discussed with regards to the corrosion properties of the alloy.


Micron ◽  
1999 ◽  
Vol 30 (1) ◽  
pp. 21-32 ◽  
Author(s):  
F.M. Ross ◽  
P.A. Bennett ◽  
R.M. Tromp ◽  
J. Tersoff ◽  
M. Reuter

1987 ◽  
Vol 96 ◽  
Author(s):  
M. H. Ghandehari ◽  
J. Fidler

ABSTRACTMicrostructures of Nd15−xDyxFe77B8 prepared by alloying with Dy, and by using Dy2O3 as a sinl'ken adidive, have been determined using electron microprobe and transmission electron microscopy. The results have shown a higher Dy concentration near the grain boundaries of the 2–14–1 phase for magnets doped with Dy2O 3, as compared to the Dy-alloyed magnets. A two-step post sintering heat treatment was also studied for the two systems. The resultant concentration gradient of Dy in the 2–14–1 phase of the oxide-doped magnets is explained by the reaction of Dy2O3 with the Nd-rich grain boundary phase and its slow diffusion into thg 4–14–1 phase. Increased Dy concentration near the grain boundary is more effective in improving the coercivity, as domain reversal nucleation originates at or near this region.


1989 ◽  
Vol 4 (2) ◽  
pp. 248-256 ◽  
Author(s):  
T. M. Shaw ◽  
S. L. Shinde ◽  
D. Dimos ◽  
R. F. Cook ◽  
P. R. Duncombe ◽  
...  

We have used transmission electron microscopy and optical microscopy to examine the effect that grain size and heat treatment have on twinning and microcracking in polycrystalline Y1Ba2Cu3O7−δ. It is shown that isothermal oxygenation heat treatments produce twin structures consisting of parallel twins, with a characteristic spacing that increases with increasing grain size. Slow cooling through the temperature range where the orthorhombic-to-tetragonal transformation induces twinning, however, produces a structure consisting of a hierarchical arrangement of intersecting twins, the scale of which appears to be independent of grain size. It is also shown that the microcracking induced by anisotropic changes in grain dimensions on cooling or during oxygenation can be suppressed if the grain size of the material is kept below about 1 μm. The results are examined in the light of current models for transformation twinning and microcracking and the models used to access the effect other processing variables such as oxygen content, doping or heat treatment may have on the microstructure of Y1Ba2Cu3O7−δ.


1989 ◽  
Vol 169 ◽  
Author(s):  
C. P. Burmester ◽  
L. T. Wille ◽  
R. Gronsky ◽  
B. T. Ahn ◽  
V. Y. Lee ◽  
...  

AbstractHigh resolution transmission electron microscopy during in‐situ quenching of YBa2Cu3Oz is used to study the kinetics of microdomain formation during oxygen loss in this system. Image simulations based on atomic models of oxygen‐vacancy order in the basal plane of this material generated by Monte Carlo calculations are used to interpret high resolution micrographs of the structures obtained by quenching. The observed domain structures agree well with those obtained from the simualtions.


1983 ◽  
Vol 28 ◽  
Author(s):  
J.W. Sears ◽  
B.C. Muddle ◽  
H.L. Fraser

ABSTRACTPowders of Al alloy 7091 have been consolidated by means of dynamic compaction. The dependence of density and hardness on projectile velocity has been determined. The resulting as-compacted material has been characterized using analytical transmission electron microscopy and evidence of interparticle melting observed. The microstructural responseof the compacted material to heat treatment at 523 and 723°K has been investigated.


2013 ◽  
Vol 750-752 ◽  
pp. 336-339
Author(s):  
Fa Chao Wu ◽  
Teng Fei Shen

In this work, CaCO3 nanoparticles have been synthesized via heat-treatment of a new precursor. Effect of calcinations temperature on particle size has been investigated. The products were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). nanoCaCO3 was modified using chloroform as solvent and fatty acid as modifier atroom temperature. The advantage of this modification is that it can be proceed at room temperature and it can reduce energy consumption.


Sign in / Sign up

Export Citation Format

Share Document