Physical-Chemical Studies and Evaluation of the Suitability of Chernoyarskoe Deposit’s Diatomite for the Synthesis of Foam Glass

2020 ◽  
Vol 299 ◽  
pp. 188-193
Author(s):  
Elena A. Yatsenko ◽  
V.A. Smoliy ◽  
A.A. Chumakov

The macro- and microstructure is investigated by microscopic analysis methods. The elemental, granulo-metric and mineralogical composition of diatomite of the Chernoyarskoe deposit is determined. As a result of complex thermal analysis, using a differential scanning calorimeter, intervals of continuous dehydration of diatomite were studied, as well as polymorphic transformations of quartz and other minerals. Physical-chemical methods of research have discovered that diatomite of the Chernoyarskoe deposit contains amorphous silica, quartzite, clay impurities, opal and minor amounts of calcite, mica, zeolite, and so this diatomite is a promising raw material for the synthesis of foam glass.

2011 ◽  
Vol 284-286 ◽  
pp. 1431-1434 ◽  
Author(s):  
Jin Rui Zhang ◽  
Ru Wang

In order to utilization the molybdenum tailings which be deposited in large quantities. Test used it to prepare glass-ceramics as main raw material, TiO2 as nucleation agents and CaO-Al2O3-SiO2 system and wollastonite as the principal crystalline phase. Heat treatment system of glass-ceramics was based on the differential thermal analysis. The crystalline phase, microstructure and characteristics of glass-ceramics were analysis by XRD, SEM and physical, chemical properties test. The result shows that the performance of glass-ceramics was superior to the other types of building decoration stone.


Author(s):  
MICHAL LESKO ◽  
TOMÁS BAKALÁR

The application of physical and physical-chemical methods of magnesite processing related to the physical, chemical and mineralogical properties of particular magnesite types are presented in this paper. The best product qualities, achieved depending on the degree of liberalization of components contained in the magnesite, are shown. Possibilities and advantages of modelling of mineral processing methods applied to magnesite are also exemplified.


2019 ◽  
Vol 75 (9-10) ◽  
pp. 387-390 ◽  
Author(s):  
A. A. Zhimalov ◽  
O. A. Nikishonkova ◽  
Yu. A. Spiridonov ◽  
I. D. Kosobudskii ◽  
M. A. Vikulova

Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Author(s):  
Radosław Rogoziński ◽  
Alina Maciejewska

AbstractVarved clay deposits from ice-dammed lakes are a particularly important and broadly applied raw material used for the production of high-quality ceramics (red bricks, roof tiles, etc.), but the mineralogy and geochemistry of these sediments are not fully understood. The aim of the present study was to determine the chemical and mineralogical composition of ice-dammed lake sediments of the Lębork deposit. Major-element analysis of the compositions of selected samples from the ice-dammed lake clays was performed by X-ray fluorescence (XRF) and trace elements were determined by inductively coupled plasma-mass spectrometry. The mineralogical composition of clay samples was determined by X-ray diffraction (XRD). Analyses of the chemical composition of the ice-dammed lake clays of the Lębork deposit showed that the dominant component was SiO2 with a mean content of 56.13 wt.%; the second most abundant component was Al2O3, with a mean content for the entire deposit of 11.61 wt.%. Analysis by ICP-MS indicated the presence of rare earth elements (REE), e.g. cerium, neodymium, lanthanum, and praseodymium; their mean contents are: 56.9, 27.0, 26.3, and 7.3 ppm, respectively. Mineralogical analysis of the varved clays identified quartz, muscovite, calcite, and clay minerals – illite, kaolinite, and montmorillonite. The material filling the Lębork basin is characterized by small lateral and vertical variability in chemical composition. The results of the present study may be of considerable importance in determining the parent igneous, metamorphic, and sedimentary rocks, the weathering products of which supplied material to the ice-dammed lake, as well as in determining the mechanisms and character of the sedimentation process itself.


1985 ◽  
Vol 68 (5) ◽  
pp. 1007-1013
Author(s):  
Badar Shaikh ◽  
Edward H Allen

Abstract A survey of literature is presented dealing with physical-chemical methods for the detection and quantitation of aminoglycoside antibiotics (gentamicin, streptomycin, dihydrostreptomycin, and neomycin) that are used in food-producing animals. Recent developments in cleanup and determinative procedures, particularly liquid chromatography, for these compounds in fluids and tissues are emphasized. Little research has been done on residues in tissues compared with other biological matrices. This review also covers the chemistry, general characteristics, tolerances, and withdrawal times for the approved uses of these antibiotics in animals that are used for food.


2019 ◽  
Vol 946 ◽  
pp. 169-173
Author(s):  
A.A. Biryukova ◽  
T.D. Dzhienalyev ◽  
A.V. Boronina

The purpose of the work is the obtaining of magnesium silicate ceramic proppants, based on ultrabasic overburden rocks of Kempirsai deposits of chromite ores (Kazakhstan). The chemical and mineralogical composition of ultrabasic overburden rock was studied by chemical, microscopic and X-ray diffraction analyzes. It is established that the main mineral of ultrabasic overburden rocks is serpentine, present in the form of fibrous chrysotile and lamellar antigorite. In the impurities are iron oxides and hydroxides, chrome spinel, carbonates, quartz. Assessment of the use of overburden rocks as a raw material for the production of ceramic proppants was carried out. The sintering interval of overburden rocks was determined at 1280-1300 °C. The sintering firing optimum temperature of ceramics, based on this type of raw material is 1300 °C. It is established that to harden the structure of magnesium silicate ceramic it is necessary to activate the raw material thermally at a temperature of 1000 °C. The influence of binder type on the properties of magnesium silicate proppants, based on the Kempirsai serpentinites was studied. Magnesium silicate proppants, based on ultrabasic overburden rocks, were obtained with the following properties: apparent density – 1.6 g/cm3, strength resistance (52 MPa) – 14%, sphericity and roundness – 0.8; chemical resistance (hydrochloric acid) – 98%, static strength of the fraction 16/20 - 72–118 N/granule. The field of application is oil and gas production, metallurgy and ceramic industries.


Author(s):  
F. Mostefa ◽  
Nasr Eddine Bouhamou ◽  
H.A. Mesbah ◽  
Salima Aggoun ◽  
D. Mekhatria

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.


2012 ◽  
Vol 1 (1) ◽  
pp. 169 ◽  
Author(s):  
Aneta Cegielka ◽  
Krzysztof Tambor

<span style="font-family: Times New Roman; font-size: small;"> </span><p>Four formulations of chicken burger were prepared: control product without inulin, and products with 1.0, 2.0 or 3.0 % of inulin (in relation to the weight of meat, fatty raw material, and water), respectively. Physical, chemical and sensory analyses were made to evaluate the effect of inulin on the quality of cooked burgers. The results showed that the application of inulin did not cause significant decrease of the thermal processing yield nor the shear force of the products. However, the addition of inulin resulted in slight, but significant differences (P &lt; 0.05) in chemical composition and energy value of burgers. Burgers of all formulations were acceptable in sensory characteristics. The addition level of inulin not higher than 1.0 %, did not result in deterioration of physical, chemical and sensory quality characteristics of chicken burgers. To improve the nutritional value of chicken burgers, the modification of fatty acid composition is recommended.</p><span style="font-family: Times New Roman; font-size: small;"> </span>


Sign in / Sign up

Export Citation Format

Share Document