Comparative Acid Leaching Study of Mongolian Muscovite and Montmorillonite Clay Minerals

2021 ◽  
Vol 323 ◽  
pp. 21-27
Author(s):  
Gendenjamts Oyun-Erdene ◽  
Dolgormaa Anudari ◽  
Luvsandagva Mandakhsaikhan ◽  
Tsoodol Zolzaya ◽  
Jadambaa Temuujin

Acid activation is the most commonly used method to enhance the chemical and physical properties of clay minerals. Porous structure formation behavior depends on the crystal structure of clay minerals. Within the same structure of clay minerals, their resistance to acid also varies. Acid leaching has been used to increase the surface area of clay minerals and obtain solids with high porosity and many acidic sites. This paper is focused on the results of acid leaching of Mongolian clay minerals (montmorillonite and muscovite). Both clay minerals belong to a group of phyllosilicates with the 2:1 crystal structure. The influence of acid concentration and leaching time on the porous properties of silica was studied. Initially, the montmorillonite was pre-treated by a simple physical purification methods. The montmorillonite and muscovite were acid leached by a 10% hydrochloric acid solution in an autoclave at 120°C for 10h. X-ray diffraction (XRD), X-ray fluorescence analysis (XRF), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and the surface area used for characterization of the raw and leached samples. The surface area of leached montmorillonite increased up to 77% and muscovite up to 63%. Clay mineral’s swelling character and isomorphic substitution of the octahedral layer show the main influence on porous structure formation.

2020 ◽  
Vol 990 ◽  
pp. 149-154
Author(s):  
Nutchaporn Ngamthanacom ◽  
Napat Kaewtrakulchai ◽  
Weerawut Chaiwat ◽  
Laemthong Chuenchom ◽  
Masayoshi Fuji ◽  
...  

Waste lignin (WL) from the pulp mill and paper was studied for its potential application to prepare the nanoporous carbon with high porosity via carbonization assisted acid activation. The effect of acid activation such as HNO3, HCl, H2SO4, and H3PO4 on lignin transformation to nanoporous carbon investigated. The physicochemical properties of nanoporous carbon were comprehensively characterized through N2 sorption, Scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), respectively. N2 sorption revealed that the condition using 5% vol of phosphoric acid activation at carbonization temperature of 700°C for 2 h exhibited the highly porous structure of carbon nanoparticles with a total pore volume of 0.035 cm3/g. With the properly selecting process variables of waste lignin development could be producing high porosity nanoporous carbon.


CrystEngComm ◽  
2014 ◽  
Vol 16 (39) ◽  
pp. 9273-9283 ◽  
Author(s):  
Christoph Zehe ◽  
Marko Schmidt ◽  
Renée Siegel ◽  
Klaus Kreger ◽  
Venita Daebel ◽  
...  

The crystal structure of 1,3,5-tris(2-fluoro-2-methylpropionylamino)benzene was solved by combining powder X-ray diffraction, solid-state NMR spectroscopy and quantum chemical calculations.


2014 ◽  
Vol 47 (1) ◽  
pp. 316-324 ◽  
Author(s):  
Prune Steins ◽  
Arnaud Poulesquen ◽  
Fabien Frizon ◽  
Olivier Diat ◽  
Jacques Jestin ◽  
...  

Nitrogen sorption and small- and wide-angle X-ray and neutron scattering techniques were used to study the porous structure of geopolymers, inorganic polymers synthesized by reaction of a strongly alkaline solution and an aluminosilicate source (metakaolin). The effects of aging and the use of alkali activators (Na+, K+) of different sizes were investigated at room temperature. The influence of aging time on the microstructure of both geopolymer matrixes was verified in terms of pore volume and specific surface area. The results suggested a refinement of the porosity and therefore a reduction in the pore volume over time. Regardless of the age considered, some characteristics of the porous network such as pore size, shape and distribution depend on the alkali activator used. Whatever the technique considered, the potassium geopolymer has a greater specific surface area than the sodium geopolymer. According to the scattering results, the refinement of the porosity can be associated with, first, a densification of the solid network and, secondly, a partial closure of the porosity at the nanometre scale. The kinetics are much slower for the sodium geopolymer than for the potassium geopolymer in the six months of observation.


2014 ◽  
Vol 38 (4) ◽  
pp. 1304-1314 ◽  
Author(s):  
Jessé Rodrigo Fink ◽  
Alberto Vasconcellos Inda ◽  
Jaime Antonio de Almeida ◽  
Carlos Alberto Bissani ◽  
Elvio Giasson ◽  
...  

Changes in land use and management can affect the dynamic equilibrium of soil systems and induce chemical and mineralogical alterations. This study was based on two long-term experiments (10 and 27 years) to evaluate soil used for no-tillage maize cultivation, with and without poultry litter application (NTPL and NTM), and with grazed native pasture fertilized with cattle droppings (GrP), on the chemical and mineralogical characteristics of a Rhodic Paleudult in Southern Brazil, in comparison with the same soil under native grassland (NGr). In the four treatments, soil was sampled from the 0.0-2.5 and 2.5-5.0 cm layers. In the air-dried fine soil (ADFS) fraction (∅ < 2 mm), chemical characteristics of solid and liquid phases and the specific surface area (SSA) were evaluated. The clay fraction (∅ < 0.002 mm) in the 0.0-2.5 cm layer was analyzed by X-ray diffraction (XRD) after treatments for identification and characterization of 2:1 clay minerals. Animal waste application increased the total organic C concentration (COT) and specific surface area (SSA) in the 0.0-2.5 cm layer. In comparison to NGr, poultry litter application (NTPL) increased the concentrations of Ca and CECpH7, while cattle droppings (GrP) increased the P and K concentrations. In the soil solution, the concentration of dissolved organic C was positively related with COT levels. With regard to NGr, the soil use with crops (NTM and NTPL) had practically no effect on the chemical elements in solution. On the other hand, the concentrations of most chemical elements in solution were higher in GrP, especially of Fe, Al and Si. The Fe and Al concentrations in the soil iron oxides were lower, indicating reductive/complexive dissolution of crystalline forms. The X-ray diffraction (XRD) patterns of clay in the GrP environment showed a decrease in intensity and reflection area of the 2:1 clay minerals. This fact, along with the intensified Al and Si activity in soil solution indicate dissolution of clay minerals in soil under cattle-grazed pasture fertilized with animal droppings.


2020 ◽  
Vol 16 ◽  
Author(s):  
Lili Yang ◽  
Chuanguo Li ◽  
Wenjie Zhang

BACKGROUND: Photocatalytic oxidation of organic pollutants in the environment has been studied for more than half a century. Titanate has the activity on degradation of organic pollutants under UV light illumination. Template directed sol-gel method is capable of producing porous structure in titanate during high temperature thermal treatment. METHODS: The materials were characterized using X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, surface area and pore size analyses, UV-Visible spectrometry, and X-ray photoelectron spectroscopy. Photocatalytic activity of the CeTi2O6 material was evaluated through ofloxacin degradation. RESULTS: Brannerite structured CeTi2O6 was the major component in the samples, and the addition of CTAB caused a slight growth of CeTi2O6 crystals. Porous structure formed in the porous sample after the removal of CTAB template, and the surface area and pore volume were greatly enlarged. The first order reaction rate constant for photocatalytic degradation of ofloxacin was 9.60×10-3 min-1 on the nonporous CeTi2O6 sample, and it was as large as 2.44×10-2 min-1 on the porous CeTi2O6 sample. The addition of CTAB can influence the physico-chemical properties of the porous CeTi2O6, such as the improved activity on photocatalytic degradation of ofloxacin. CONCLUSION: The CeTi2O6 samples were composed of majority brannerite CeTi2O6, and CeTi2O6 crystallite sizes for the nonporous and porous samples were 38.1 and 43.2 nm. The burning up of CTAB during calcination produced abundant pores in the porous material. After 50 min of reaction, photocatalytic degradation efficiencies on the nonporous and porous CeTi2O6 samples were 38.1% and 70.5%.


2020 ◽  
Vol 17 (6) ◽  
pp. 1512-1526
Author(s):  
Xiao-Guang Yang ◽  
Shao-Bin Guo

AbstractThe evolution of shale reservoirs is mainly related to two functions: mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect. Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale, and X-ray diffraction (XRD), CO2 adsorption, N2 adsorption and high-pressure mercury injection (MIP) were then used to characterize shale diagenesis and porosity. Moreover, simulations of mechanical compaction adhering to mathematical models were performed, and a shale compaction model was proposed considering clay content and kaolinite proportions. The advantage of this model is that the change in shale compressibility, which is caused by the transformation of clay minerals during thermal evolution, may be considered. The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction. Such interactions may then express the pore evolution of shale in actual conditions of formation. Accordingly, the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content, proving that other clay minerals such as illite–smectite mixed layers (I/S) and illite are conducive to the development of pores. Shales possessing a high clay mineral content have a higher porosity in shallow layers (< 3500 m) and a lower porosity in deep layers (> 3500 m). Both the amount and location of the increase in porosity differ at different geothermal gradients. High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro. The pore evolution of the marine-continental transitional shale is divided into five stages. Stage 2 possesses an Ro of 1.0%–1.6% and has high porosity along with a high specific surface area. Stage 3 has an Ro of 1.6%–2.0% and contains a higher porosity with a low specific surface area. Finally, Stage 4 has an Ro of 2.0%–2.9% with a low porosity and high specific surface area.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4989
Author(s):  
Kateřina Strejcová ◽  
Zdeněk Tišler ◽  
Eliška Svobodová ◽  
Romana Velvarská

This study focused on natural materials such as clinoptilolite (CLI), metakaolin (MK), marlstone (MRL) and phonolite (PH). Clinoptilolite is one of the most known and common natural minerals (zeolites) with a unique porous structure, metakaolin is calcined kaolin clay, marlstone is a sedimentary rock and phonolite is an igneous rock composed of alkali feldspar and other minerals. These natural materials are mainly used in the building industry (additions for concrete mixtures, production of paving, gravels) or for water purification, but the modification of their chemical, textural and mechanical properties makes these materials potentially usable in other industries, especially in the chemical industry. The modification of these natural materials and rocks was carried out by leaching using 0.1 M HCl (D1 samples) and then using 3 M HCl (D2 samples). This treatment could be an effective tool to modify the structure and composition of these materials. Properties of modified materials were determined by N2 physisorption, Hg porosimetry, temperature programmed desorption of ammonia (NH3-TPD), X-ray fluorescence (XRF), X-ray powder diffraction (XRD), diffuse reflectance infrared Fourier transform (DRIFT) and CO2 adsorption using thermogravimetric analysis (TGA). The results of N2 physisorption measurements showed that that the largest increase of specific surface area was for clinoptilolite leached using 3M HCl. There was also a significant increase of the micropore volume in the D2 samples. The only exception was marlstone, where the volume of micropores was zero even in the leached sample. Clinoptilolite had the highest acidity and sorption capacity of CO2. TGA showed that the amount of CO2 adsorbed was not significantly related to the increase in specific surface area and the opening of micropores. Hg porosimetry showed that acid leaching using 0.1 M HCl and 3 M HCl resulted in a significant increase in the macropore volume in phonolite, and during leaching using 3M HCl there was an increase of the mesopore volume. From the better properties, cost-efficient and environmental points of view, the use of these materials could be an interesting solution for catalytic and sorption applications.


Sign in / Sign up

Export Citation Format

Share Document