Enhanced ofloxacin degradation efficiency on porous CeTi2O6 photocatalyst-CTAB induced porosity

2020 ◽  
Vol 16 ◽  
Author(s):  
Lili Yang ◽  
Chuanguo Li ◽  
Wenjie Zhang

BACKGROUND: Photocatalytic oxidation of organic pollutants in the environment has been studied for more than half a century. Titanate has the activity on degradation of organic pollutants under UV light illumination. Template directed sol-gel method is capable of producing porous structure in titanate during high temperature thermal treatment. METHODS: The materials were characterized using X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, surface area and pore size analyses, UV-Visible spectrometry, and X-ray photoelectron spectroscopy. Photocatalytic activity of the CeTi2O6 material was evaluated through ofloxacin degradation. RESULTS: Brannerite structured CeTi2O6 was the major component in the samples, and the addition of CTAB caused a slight growth of CeTi2O6 crystals. Porous structure formed in the porous sample after the removal of CTAB template, and the surface area and pore volume were greatly enlarged. The first order reaction rate constant for photocatalytic degradation of ofloxacin was 9.60×10-3 min-1 on the nonporous CeTi2O6 sample, and it was as large as 2.44×10-2 min-1 on the porous CeTi2O6 sample. The addition of CTAB can influence the physico-chemical properties of the porous CeTi2O6, such as the improved activity on photocatalytic degradation of ofloxacin. CONCLUSION: The CeTi2O6 samples were composed of majority brannerite CeTi2O6, and CeTi2O6 crystallite sizes for the nonporous and porous samples were 38.1 and 43.2 nm. The burning up of CTAB during calcination produced abundant pores in the porous material. After 50 min of reaction, photocatalytic degradation efficiencies on the nonporous and porous CeTi2O6 samples were 38.1% and 70.5%.

2018 ◽  
Vol 15 (4) ◽  
pp. 226 ◽  
Author(s):  
Meiqing Chen ◽  
Pingxiao Wu ◽  
Qianqian Wei ◽  
Yajie Zhu ◽  
Shanshan Yang ◽  
...  

Environmental contextAn important goal in attempts to degrade environmental organic pollutants is the development of a photocatalyst that is responsive to visible light. We report a facile method for preparing a zinc-based photocatalyst with oxygen vacancies that efficiently degrades bisphenol A under solar light irradiation. The study will stimulate further investigations into the efficacy of other metal oxide nanostructures for the photocatalytic degradation of organic pollutants. AbstractTwo ZnCr-layered double oxides (ZnCr-LDO) were fabricated via different thermal treatment of the ZnCr-layered double hydroxide (ZnCr-LDH) precursor. ZnCr-V-700 and ZnCr-A-700 were obtained at 700 °C under vacuum and air, respectively. As X-ray diffraction revealed, both ZnCr-V-700 and ZnCr-A-700 were made up of ZnO and ZnCr2O4 spinel, and ZnCr-V-700 displayed a lower crystallinity and many uniform particles with oxygen vacancies. Scanning electron microscopy and transmission electron microscopy revealed that the particle size of ZnCr-V-700 was ~30 nm and its disordered crystallinity suggested the existence of oxygen vacancies. Notably, the ZnCr-LDO materials showed remarkably enhanced photocatalytic activity compared to the ZnCr-LDH precursor. ZnCr-V-700 was the most active material and more than 90 % of BPA was degraded after irradiation for 200 min with high mineralisation (up to 37 %). The results of Brunauer–Emmett–Teller surface area analysis, X-ray photoelectron spectroscopy, Raman and UV-vis spectroscopy and electron paramagnetic resonance spectroscopy showed that oxygen vacancies incorporated into ZnCr-V-700 played a key role in improving the photocatalytic performance by enhancing interfacial charge transfer and restricting the charge recombination. In addition, the uniform particle size, larger surface area and the coexistence of ZnO and ZnCr2O4 also played a synergistic role. In conclusion, this work not only provides a facile and low-cost method to prepare photocatalysts for treatment of wastewater containing BPA, but also supplies a new idea for improving the performance of photocatalysts.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2209 ◽  
Author(s):  
Jing Liu ◽  
Xiao-Min Li ◽  
Jing He ◽  
Lu-Ying Wang ◽  
Jian-Du Lei

A core-shell Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC)@TiO2 was successfully synthesized for photocatalysis-assisted adsorptive desulfurization to improve adsorptive desulfurization (ADS) performance. Under ultraviolet (UV) light irradiation, the TiO2 shell on the surface of Cu-BTC achieved photocatalytic oxidation of thiophenic S-compounds, and the Cu-BTC core adsorbed the oxidation products (sulfoxides and sulfones). The photocatalyst and adsorbent were combined using a distinct core-shell structure. The morphology and structure of the fabricated Cu-BTC@TiO2 microspheres were verified by scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, X-ray powder diffraction, nitrogen adsorption-desorption and X-ray photoelectron spectroscopy analyses. A potential formation mechanism of Cu-BTC@TiO2 is proposed based on complementary experiments. The sulfur removal efficiency of the microspheres was evaluated by selective adsorption of benzothiophene (BT) and dibenzothiophene (DBT) from a model fuel with a sulfur concentration of 1000 ppmw. Within a reaction time of 20 min, the BT and DBT conversion reached 86% and 95%, respectively, and achieved ADS capacities of 63.76 and 59.39 mg/g, respectively. The BT conversion and DBT conversion obtained using Cu-BTC@TiO2 was 6.5 and 4.6 times higher, respectively, than that obtained using Cu-BTC. A desulfurization mechanism was proposed, the interaction between thiophenic sulfur compounds and Cu-BTC@TiO2 microspheres was discussed, and the kinetic behavior was analyzed.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 105 ◽  
Author(s):  
Huiting Wang ◽  
Jin Mao ◽  
Zhaowei Zhang ◽  
Qi Zhang ◽  
Liangxiao Zhang ◽  
...  

Deoxynivalenol (DON) is a secondary metabolite produced by Fusarium, which is a trichothecene mycotoxin. As the main mycotoxin with high toxicity, wheat, barley, corn and their products are susceptible to contamination of DON. Due to the stability of this mycotoxin, traditional methods for DON reduction often require a strong oxidant, high temperature and high pressure with more energy consumption. Therefore, exploring green, efficient and environmentally friendly ways to degrade or reduce DON is a meaningful and challenging issue. Herein, a dendritic-like α-Fe2O3 was successfully prepared using a facile hydrothermal synthesis method at 160 °C, which was systematically characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It was found that dendritic-like α-Fe2O3 showed superior activity for the photocatalytic degradation of DON in aqueous solution under visible light irradiation (λ > 420 nm) and 90.3% DON (initial concentration of 4.0 μg/mL) could be reduced in 2 h. Most of all, the main possible intermediate products were proposed through high performance liquid chromatography-mass spectrometry (HPLC-MS) after the photocatalytic treatment. This work not only provides a green and promising way to mitigate mycotoxin contamination but also may present useful information for future studies.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 301 ◽  
Author(s):  
Ke Xu ◽  
Xiaosheng Yang ◽  
Luda Ruan ◽  
Shaolv Qi ◽  
Jianling Liu ◽  
...  

Mesoporous LaFeO3/g-C3N4 Z-scheme heterojunctions (LFC) were synthesized via the incorporation of LaFeO3 nanoparticles and porous g-C3N4 ultrathin nanosheets. The as prepared LFC were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, powder X-ray diffraction, Raman spectra and N2 adsorption analysis. The structural analysis indicated that the reheating process and the addition of NH4Cl in the thermal polymerization were the key factors to get porous g-C3N4 ultrathin nanosheets and to obtain high specific surface areas of LFC. It remarkably enhanced the adsorption capacity and photocatalytic degradation of LFC for removal of oxytetracycline (OTC). The effect of the mass percentage of LaFeO3 in LFC, pH and temperature on the OTC adsorption was investigated. The LaFeO3/g-C3N4 heterojunction with 2 wt % LaFeO3 (2-LFC) exhibited highest saturated adsorption capacity (101.67 mg g−1) and largest photocatalytic degradation rate constant (1.35 L g−1 min−1), which was about 9 and 5 times higher than that of bulk g-C3N4 (CN), respectively. This work provided a facile method to prepare mesoporous LaFeO3/g-C3N4 heterojunctions with especially well adsorption and photocatalytic activities for OTC, which can facilitate its practical applications in pollution control.


2019 ◽  
Vol 11 (12) ◽  
pp. 1731-1738 ◽  
Author(s):  
Ma Hui ◽  
Wu Juzhen ◽  
Zhao Li ◽  
Zhou Zheng ◽  
Guo Jiahu

A one-pot simple and efficient synthetic route for the synthesis of Au-loaded Fe2O3 nanoparticles was developed, and this material's photocatalytic activity for visible light assisted oxidation of alcohols and degradation of organic dye were studied. As-synthesized nanostructured catalyst was characterised by powder X-ray diffraction (XRD), transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), SEM-mapping, X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherm (BET), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). It was observed that 5–10 nm Au-nanoparticles supported on 10–80 nm Fe2O3 shows boomerang-shaped nanoparticle. Gold loading of 1 wt% shows high conversion and selectivity towards the target product aldehyde. The synthesized nanomaterial also proved to be an excellent photocatalyst for degradation of organic dyes such as methylene blue (MB) and rhodamine B (RhB). The catalyst proved to be noteworthy as it does not loss in its catalytic activity even after five cycles of reuse.


2011 ◽  
Vol 335-336 ◽  
pp. 460-463 ◽  
Author(s):  
Hong Mei Wang ◽  
Da Peng Zhou ◽  
Yuan Lian ◽  
Ming Pang ◽  
Dan Liu

Hexagonal flower-like CdS nanostructures were successfully synthesized through a facile hydrothermal method with thiourea as sulfur source. By combining the results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), the structural and morphological characterizations of the products were performed. The photocatalytic activity of CdS nanostructures had been tested by degradation of Rhodamine B (RB) under UV light compared to commercial CdS powders, which indicated that the as-syntherized CdS nanostructures exhibited enhanced photocatalytic activity for degradation of RB. The possible growth mechanism of CdS nanostructures was proposed in the end.


NANO ◽  
2014 ◽  
Vol 09 (08) ◽  
pp. 1450097 ◽  
Author(s):  
ZENG BIN ◽  
LONG HUI

The nanocomposites of graphene loaded– ZnS nanoflowers (GR– ZnS ) had been successfully prepared. Materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) spectra. A possible formation mechanism of this architecture was proposed. The experimental results revealed that these nanoflowers exhibited excellent UV-light photocatalytic activities for pollutant methyl orange (MO) dye degradation. These new nanostructures were expected to show considerable potential applications in the water treatment.


2013 ◽  
Vol 16 (3) ◽  
pp. 141-145
Author(s):  
M.L. Hernandez-Pichardo ◽  
R. Gonzalez-Huerta ◽  
P. del Angel ◽  
E. Palacios-Gonzalez ◽  
M. Tufiño-Velazquez ◽  
...  

Platinum reduction on Pt/C catalysts was studied on samples prepared by the impregnation method using different Pt precursors and reducing agents such as ethanol, sodium borohydride and ethanol-UV light (photo-assisted reduction), in order to compare the efficiency of the different reducing agents. The influence of the reduction level of the platinum species on the electrochemical behavior of these catalysts has been determined. The catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and linear and cyclic voltammetry. The results show that the reduction level depends mainly on the platinum precursor. Moreover, it was found that the higher electrochemical activity was found using catalysts reduced with ethanol, whereas by using NaBH4 as the reducing agent, the total reduction of the platinum precursor is very difficult in same synthesis conditions. The analysis of the XPS results shows that samples reduced with ethanol presented the lower PtOx/Pt reduction ratio.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mingjie Ma ◽  
Weijie Guo ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Guanyu Wang

TiO2/fine char (FC) photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB) aqueous solution under UV light irradiation. The results showed that TiO2was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.


Sign in / Sign up

Export Citation Format

Share Document