Solution Growth of Polycrystalline Silicon on Quartz Glass Substrates

2003 ◽  
Vol 93 ◽  
pp. 243-248 ◽  
Author(s):  
Rui Kamada ◽  
Ching-ju Wen ◽  
Junichiro Otomo ◽  
Hiroshi Takahashi
1994 ◽  
Vol 19 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
S.H. Lee ◽  
R. Bergmann ◽  
E. Bauser ◽  
H.J. Queisser

2013 ◽  
Vol 753 ◽  
pp. 505-509
Author(s):  
Yuichi Sato ◽  
Toshifumi Suzuki ◽  
Hiroyuki Mogami ◽  
Fumito Otake ◽  
Hirotoshi Hatori ◽  
...  

Solid phase growth of thin films of copper (Cu), aluminum (Al) and zinc oxide (ZnO) on single crystalline sapphire and quartz glass substrates were tried by heat-treatments and their crystallization conditions were investigated. ZnO thin films relatively easily recrystallized even when they were deposited on the amorphous quartz glass substrate. On the other hand, Cu and Al thin films hardly recrystallized when they were deposited on the quartz glass substrate. The metal thin films could be recrystallized at only extremely narrow windows of the heat-treatment conditions when they were deposited on the single crystalline sapphire substrate. The window of the solid phase heteroepitaxial growth condition of the Al film was wider than that of the Cu film.


1999 ◽  
Vol 107 (1251) ◽  
pp. 1099-1104 ◽  
Author(s):  
Toshio KAMIYA ◽  
Yoshiteru MAEDA ◽  
Kouichi NAKAHATA ◽  
Takashi KOMARU ◽  
Charles M. FORTMANN ◽  
...  

Shinku ◽  
1986 ◽  
Vol 29 (5) ◽  
pp. 332-336 ◽  
Author(s):  
Yoichiro NAKANISHI ◽  
Koji KIMURA ◽  
Shinji YAMASAKI ◽  
Goro SHIMAOKA

Author(s):  
Wataru Kosaka ◽  
Shoma Hoshi ◽  
Kanta Kudo ◽  
Kentaro Kaneko ◽  
Tomohiro Yamaguchi ◽  
...  

2019 ◽  
Vol 9 (21) ◽  
pp. 4509
Author(s):  
Weijia Yang ◽  
Fengming Wang ◽  
Zeyi Guan ◽  
Pengyu He ◽  
Zhihao Liu ◽  
...  

In this work, we reported a comparative study of ZnO thin films grown on quartz glass and sapphire (001) substrates through magnetron sputtering and high-temperature annealing. Firstly, the ZnO thin films were deposited on the quartz glass and sapphire (001) substrates in the same conditions by magnetron sputtering. Afterwards, the sputtered ZnO thin films underwent an annealing process at 600 °C for 1 h in an air atmosphere to improve the quality of the films. X-ray diffraction, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectra, photoluminescence spectra, and Raman spectra were used to investigate the structural, morphological, electrical, and optical properties of the both as-received ZnO thin films. The ZnO thin films grown on the quartz glass substrates possess a full width of half maximum value of 0.271° for the (002) plane, a surface root mean square value of 0.50 nm and O vacancies/defects of 4.40% in the total XPS O 1s peak. The comparative investigation reveals that the whole properties of the ZnO thin films grown on the quartz glass substrates are comparable to those grown on the sapphire (001) substrates. Consequently, ZnO thin films with high quality grown on the quartz glass substrates can be achieved by means of magnetron sputtering and high-temperature annealing at 600 °C.


1999 ◽  
Vol 169-170 ◽  
pp. 171-174
Author(s):  
Toshio Kamiya ◽  
Kouichi Nakahata ◽  
Kazuyoshi Ro ◽  
J. Tohti ◽  
Charles M. Fortmann ◽  
...  

Author(s):  
Xiao Di Liu ◽  
Dacheng Zhang

Nanosized tin oxide thin films were fabricated on silicon and quartz glass substrates by direct current reactive magnetron sputtering method, and then were calcined at different temperatures ranging from 400°C to 900°C. The results analyzed by X ray photoemission spectra (XPS), scanning electron microscope (SEM), Spectroscopic ellipsometer, Powder X-ray diffraction (XRD), and HP4145B semiconductor parameter analyzer measurements show that the sample with quartz glass substrate and calcinated at 650°C possesses better properties and suitable to be used in our gas sensor.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Kuninori Kitahara ◽  
Toshitomo Ishii ◽  
Junki Suzuki ◽  
Takuro Bessyo ◽  
Naoki Watanabe

Raman microscopy was applied to characterize polycrystalline silicon (poly-Si) on glass substrates for application as thin-film transistors (TFTs) integrated on electronic display panels. This study examines the crystallographic defects and stress in poly-Si films grown by industrial techniques: solid phase crystallization and excimer laser crystallization (ELC). To distinguish the effects of defects and stress on the optical-phonon mode of the Si–Si bond, a semiempirical analysis was performed. The analysis was compared with defect images obtained through electron microscopy and atomic force microscopy. It was found that the Raman intensity for the ELC film is remarkably enhanced by the hillocks and ridges located around grain boundaries, which indicates that Raman spectra mainly reflect the situation around grain boundaries. A combination of the hydrogenation of films and the observation of the Si-hydrogen local-vibration mode is useful to support the analysis on the defects. Raman microscopy is also effective for detecting the plasma-induced damage suffered during device processing and characterizing the performance of Si layer in TFTs.


Sign in / Sign up

Export Citation Format

Share Document