Seasonal patterns in the structure of epigeic beetle (Coleoptera) assemblages in two subarctic habitats in Nunavut, Canada

2013 ◽  
Vol 145 (2) ◽  
pp. 171-183 ◽  
Author(s):  
C.M. Ernst ◽  
C.M. Buddle

AbstractSeasonal patterns in the taxonomic and functional structure of epigeic Coleoptera assemblages in wet and mesic habitats were studied in Kugluktuk, Nunavut, Canada. Using pan and pitfall traps, 2638 beetles were collected between 21 June and 13 August 2010. Fifty species (including 17 new territory records) in 11 families were identified. The biomass of each specimen was estimated, and each was assigned to a functional group. Species composition differed between habitats throughout the active season and there was a rapid compositional turnover even though species diversity was similar in both habitats and among sampling periods. The functional beetle assemblages in the two habitats were different, and both assemblages experienced seasonal turnover in function; this effect was more pronounced in the mesic habitats. The beetle fauna in both habitats was predominantly entomophagous. We also examined the influence of seasonal weather patterns on assemblage structure: there is a significant relationship between mean daily temperature and assemblage structure. This relationship indicates that changes in weather (or longer-term changes in climate) could affect the diversity and ecological function of insects in this system. Given the significance of insects in the north, this could result in important changes to northern ecology.

Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
László Somay ◽  
Viktor Szigeti ◽  
Gergely Boros ◽  
Réka Ádám ◽  
András Báldi

Wood pastures are home to a variety of species, including the dung beetle. Dung beetles are an important functional group in decomposition. Specifically, in terms of livestock manure, they not only contribute to nutrient cycling but are key players in supporting human and animal health. Dung beetles, however, are declining in population, and urgent recommendations are needed to reverse this trend. Recommendations need to be based on solid evidence and specific habitats. Herein, we aimed to investigate the role of an intermediate habitat type between forests and pastures. Wood pastures are key areas for dung beetle conservation. For this reason, we compared dung beetle assemblages among forests, wood pastures, and grasslands. We complemented this with studies on the effects of dung type and season at three Hungarian locations. Pitfall traps baited with cattle, sheep, or horse dung were used in forests, wood pastures, and pasture habitats in spring, summer, and autumn. Dung beetle assemblages of wood pastures showed transient characteristics between forests and pastures regarding their abundance, species richness, Shannon diversity, assemblage composition, and indicator species. We identified a strong effect of season and a weak of dung type. Assemblage composition proved to be the most sensitive measure of differences among habitats. The conservation of dung beetles, and the decomposition services they provide, need continuous livestock grazing to provide fresh dung, as well as the maintenance of wood pastures where dung beetle assemblages typical of forests and pastures can both survive.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 294
Author(s):  
Norel Rimbu ◽  
Monica Ionita ◽  
Gerrit Lohmann

The variability of stable oxygen isotope ratios (δ18O) from Greenland ice cores is commonly linked to changes in local climate and associated teleconnection patterns. In this respect, in this study we investigate ice core δ18O variability from a synoptic scale perspective to assess the potential of such records as proxies for extreme climate variability and associated weather patterns. We show that positive (negative) δ18O anomalies in three southern and central Greenland ice cores are associated with relatively high (low) Rossby Wave Breaking (RWB) activity in the North Atlantic region. Both cyclonic and anticyclonic RWB patterns associated with high δ18O show filaments of strong moisture transport from the Atlantic Ocean towards Greenland. During such events, warm and wet conditions are recorded over southern, western and central part of Greenland. In the same time the cyclonic and anticyclonic RWB patterns show enhanced southward advection of cold polar air masses on their eastern side, leading to extreme cold conditions over Europe. The association between high δ18O winters in Greenland ice cores and extremely cold winters over Europe is partly explained by the modulation of the RWB frequency by the tropical Atlantic sea surface temperature forcing, as shown in recent modeling studies. We argue that δ18O from Greenland ice cores can be used as a proxy for RWB activity in the Atlantic European region and associated extreme weather and climate anomalies.


2020 ◽  
Vol 20 (3) ◽  
pp. 11-18
Author(s):  
Hyeon-Cheol Lee ◽  
Young-Jun Cho ◽  
Byunghwan Lim ◽  
Seung-Bum Kim

In this study, weather patterns (WPs) associated with the heat wave in South Korea are objectively classified by applying <i>K</i>-means clustering analysis. The representative weather patterns that caused the heat wave were divided into three WPs, namely WP 1, WP 2, and WP 3. The heat wave over the Korean Peninsula was mainly related to the expansion of the North Pacific High (NPH). Moreover, we analyzed the relationship between casualties and WPs of the heat wave. In WP 1, the isobar of NPH was located in the southern part of South Korea. Most casualties (18 people) occurred in this region. In WP 2, NPH was distributed throughout South Korea, with nationwide casualties of 44 people. Moreover, the duration of the heat wave for WP 2 was the longest, at 4.5 days. WP 3 occurred mainly in June, when the NPH was not yet developed, presenting the smallest number of casualties.


2015 ◽  
Vol 21 (5) ◽  
pp. 1856-1870 ◽  
Author(s):  
Yoichiro Kanno ◽  
Benjamin H. Letcher ◽  
Nathaniel P. Hitt ◽  
David A. Boughton ◽  
John E. B. Wofford ◽  
...  

2014 ◽  
Vol 27 (18) ◽  
pp. 6919-6939 ◽  
Author(s):  
Owen A. Kelley

Abstract Some previous studies were unable to detect seasonal organization to the rainfall in the Sahara Desert, while others reported seasonal patterns only in the less-arid periphery of the Sahara. In contrast, the precipitation radar on the Tropical Rainfall Measuring Mission (TRMM) satellite detects four rainy seasons in the part of the Sahara where the TRMM radar saw the least rainfall during a 15-yr period (1998–2012). According to the TRMM radar, approximately 20°–27°N, 22°–32°E is the portion of the Sahara that has the lowest average annual rain accumulation (1–5 mm yr−1). Winter (January and February) has light rain throughout this region but more rain to the north over the Mediterranean Sea. Spring (April and May) has heavier rain and has lightning observed by the TRMM Lightning Imaging Sensor (LIS). Summer rain and lightning (July and August) occur primarily south of 23°N. At a maximum over the Red Sea, autumn rain and lightning (October and November) can be heavy in the northeastern portion of the study area, but these storms are unreliable: that is, the TRMM radar detects such storms in only 6 of the 15 years. These four rainy seasons are each separated by a comparatively drier month in the monthly rainfall climatology. The few rain gauges in this arid region broadly agree with the TRMM radar on the seasonal organization of rainfall. This seasonality is reason to reevaluate the idea that Saharan rainfall is highly irregular and unpredictable.


Sign in / Sign up

Export Citation Format

Share Document