Impact of density and sex-dependent larval competition on selected life history traits ofDrosophila melanogaster(Diptera: Drosophilidae)

2017 ◽  
Vol 150 (1) ◽  
pp. 87-99
Author(s):  
Sohini Singha Roy ◽  
Gautam Aditya ◽  
Sujay Ghosh

AbstractAn assessment of the effects of competitive behaviour and sex on seven selected life history traits ofDrosophila melanogasterMeigen (Diptera: Drosophilidae) was made under precisely regulated larval density. Contrary to the conditions of crowding, as considered in many previous studies, the low scale of density enabled assessment of the life history traits at the individual level with higher precision and low variations. The 0-day-old first instars were reared with the relative density of 1,2, 3, and 4 individuals with optimal food until the adults emerged. The life history traits like age at pupation, age at eclosion, adult body weight, adult body length, wing length, and adult survival were used as response variables. Both the density and sex of the competitors were considered as predictors of the life history traits and a stronger effect was evident in the female sex than in males, which is statistically significant. Result also revealed the effect of competitive behaviour was more intense in case of same sex competitors than of opposite sex. In all instances, the life history traits exhibited a trend of decreasing function with the increasing larval rearing density, in compliance with the norms of density-dependent effects on development ofDrosophilaFallén and similar insects.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nwamaka Oluchukwu Akpodiete ◽  
Frédéric Tripet

Abstract Background Malaria vector control approaches that rely on mosquito releases such as the sterile insect technique (SIT) and suppression or replacement strategies relying on genetically modified mosquitoes (GMM) depend on effective mass production of Anopheles mosquitoes. Anophelines typically require relatively clean larval rearing water, and water management techniques that minimise toxic ammonia are key to achieving optimal rearing conditions in small and large rearing facilities. Zeolites are extensively used in closed-system fish aquaculture to improve water quality and reduce water consumption, thanks to their selective adsorption of ammonia and toxic heavy metals. The many advantages of zeolites include low cost, abundance in many parts of the world and environmental friendliness. However, so far, their potential benefit for mosquito rearing has not been evaluated. Methods This study evaluated the independent effects of zeolite and daily water changes (to simulate a continuous flow system) on the rearing of An. coluzzii under two feed regimes (powder and slurry feed) and larval densities (200 and 400 larvae per tray). The duration of larval development, adult emergence success and phenotypic quality (body size) were recorded to assess the impact of water treatments on mosquito numbers, phenotypic quality and identification of optimal feeding regimes and larval density for the use of zeolite. Results Overall, mosquito emergence, duration of development and adult phenotypic quality were significantly better in treatments with daily water changes. In treatments without daily water changes, zeolite significantly improved water quality at the lower larval rearing density, resulting in higher mosquito emergence and shorter development time. At the lower larval rearing density, the adult phenotypic quality did not significantly differ between zeolite treatment without water changes and those with daily changes. Conclusions These results suggest that treating rearing water with zeolite can improve mosquito production in smaller facilities. Zeolite could also offer cost-effective and environmentally friendly solutions for water recycling management systems in larger production facilities. Further studies are needed to optimise and assess the costs and benefits of such applications to Anopheles gambiae (s.l.) mosquito-rearing programmes. Graphic abstract


2021 ◽  
Vol 9 ◽  
Author(s):  
Abel Bernadou ◽  
Boris H. Kramer ◽  
Judith Korb

The evolution of eusociality in social insects, such as termites, ants, and some bees and wasps, has been regarded as a major evolutionary transition (MET). Yet, there is some debate whether all species qualify. Here, we argue that worker sterility is a decisive criterion to determine whether species have passed a MET (= superorganisms), or not. When workers are sterile, reproductive interests align among group members as individual fitness is transferred to the colony level. Division of labour among cooperating units is a major driver that favours the evolution of METs across all biological scales. Many METs are characterised by a differentiation into reproductive versus maintenance functions. In social insects, the queen specialises on reproduction while workers take over maintenance functions such as food provisioning. Such division of labour allows specialisation and it reshapes life history trade-offs among cooperating units. For instance, individuals within colonies of social insects can overcome the omnipresent fecundity/longevity trade-off, which limits reproductive success in organisms, when increased fecundity shortens lifespan. Social insect queens (particularly in superorganismal species) can reach adult lifespans of several decades and are among the most fecund terrestrial animals. The resulting enormous reproductive output may contribute to explain why some genera of social insects became so successful. Indeed, superorganismal ant lineages have more species than those that have not passed a MET. We conclude that the release from life history constraints at the individual level is a important, yet understudied, factor across METs to explain their evolutionary success.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6104 ◽  
Author(s):  
Francisco Javier Zamora-Camacho ◽  
Mar Comas

The effects of age on performance of life-history traits are diverse, but a common outcome is senescence, an irreversible deterioration of physical and physiological capabilities of older individuals. Immune response is potentially bound to senescence. However, little is known about immune response ageing in amphibians. In this work, we test the hypothesis that amphibian early immune response is reduced in older individuals. To this end, we captured adult natterjack toads (Epidalea calamita) and inoculated them with phytohemagglutinin, an innocuous protein that triggers a skin-swelling immune response whose magnitude is directly proportional to the ability of the individual to mount an immune response. We measured early swelling immune response (corresponding to an innate-response stage) hourly, for six hours, and we calculated the area under the curve (AUC) for each individual’s time series, as a measure of immune response magnitude incorporating time. We estimated toad age by means of phalanx skeletochronology. Swelling and AUC decreased with age. Therefore, in accordance with our predictions, early immune response seems subject to senescence in these toads. Reduced ability to get over infections due to senescence of immune respose might be—together with a worse functioning of other organs and systems—among the causes of lower survival of older specimens.


The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Robert E. Ricklefs

Abstract Although we have learned much about avian life histories during the 50 years since the seminal publications of David Lack, Alexander Skutch, and Reginald Moreau, we still do not have adequate explanations for some of the basic patterns of variation in life-history traits among birds. In part, this reflects two consequences of the predominance of evolutionary ecology thinking during the past three decades. First, by blurring the distinction between life-history traits and life-table variables, we have tended to divorce life histories from their environmental context, which forms the link between the life history and the life table. Second, by emphasizing constrained evolutionary responses to selective factors, we have set aside alternative explanations for observed correlations among life-history traits and life-table variables. Density-dependent feedback and independent evolutionary response to correlated aspects of the environment also may link traits through different mechanisms. Additionally, in some cases we have failed to evaluate quantitatively ideas that are compelling qualitatively, ignored or explained away relevant empirical data, and neglected logical implications of certain compelling ideas. Comparative analysis of avian life histories shows that species are distributed along a dominant slow-fast axis. Furthermore, among birds, annual reproductive rate and adult mortality are directly proportional to each other, requiring that pre-reproductive survival is approximately constant. This further implies that age at maturity increases dramatically with increasing adult survival rate. The significance of these correlations is obscure, particularly because survival and reproductive rates at each age include the effects of many life-history traits. For example, reproductive rate is determined by clutch size, nesting success, season length, and nest-cycle length, each of which represents the outcome of many different interactions of an individual's life-history traits with its environment. Resolution of the most basic issues raised by patterns of life histories clearly will require innovative empirical, modeling, and experimental approaches. However, the most fundamental change required at this time is a broadening of the evolutionary ecology paradigm to include a variety of alternative mechanisms for generating patterns of life-history variation.


2012 ◽  
Vol 58 (2) ◽  
pp. 358-362 ◽  
Author(s):  
Ned A. Dochtermann ◽  
C. M. Gienger

Abstract Understanding how population sizes vary over time is a key aspect of ecological research. Unfortunately, our understanding of population dynamics has historically been based on an assumption that individuals are identical with homogenous life-history properties. This assumption is certainly false for most natural systems, raising the question of what role individual variation plays in the dynamics of populations. While there has been an increase of interest regarding the effects of within population variation on the dynamics of single populations, there has been little study of the effects of differences in within population variation on patterns observed across populations. We found that life-history differences (clutch size) among individuals explained the majority of the variation observed in the degree to which population sizes of eastern fence lizards Sceloporus undulatus fluctuated. This finding suggests that differences across populations cannot be understood without an examination of differences at the level of a system rather than at the level of the individual [Current Zoology 58 (2): 358–362, 2012].


2012 ◽  
Vol 8 (3) ◽  
pp. 362-364 ◽  
Author(s):  
Andrew T. Kahn ◽  
Julianne D. Livingston ◽  
Michael D. Jennions

A poor start in life owing to a restricted diet can have readily detectable detrimental consequences for many adult life-history traits. However, some costs such as smaller adult body size are potentially eliminated when individuals modify their development. For example, male mosquitofish ( Gambusia holbrooki ) that have reduced early food intake undergo compensatory growth and delay maturation so that they eventually mature at the same size as males that develop normally. But do subtle effects of a poor start persist? Specifically, does a male's developmental history affect his subsequent attractiveness to females? Females prefer to associate with larger males but, controlling for body length, we show that females spent less time in association with males that underwent compensatory growth than with males that developed normally.


2014 ◽  
Vol 60 (3) ◽  
pp. 417-427 ◽  
Author(s):  
Tristan Juette ◽  
Julien Cucherousset ◽  
Julien Cote

Abstract While the ecological impacts of invasive species have been demonstrated for many taxonomic groups, the potential effects of behavioural variation among non-native individuals (i.e. personality) on these impacts have been largely overlooked. This is despite the fact that recent studies have demonstrated that, by nature, the three first stages of biological invasions (i.e. transport, establishment and spread) can lead to personality-biased populations. Freshwater ecosystems provide a unique opportunity to investigate this issue, notably because the ecological impacts of non-native species have been extensively documented and because animal personality has been widely studied using freshwater model species. Here, we aim at developing some perspectives on the potential effects of animal personality on the ecological impacts of freshwater non-native species across levels of biological organizations. At the individual level, personality types have been demonstrated to affect the physiolo- gy, metabolism, life history traits and fitness of individuals. We used these effects to discuss how they could subsequently impact invaded populations and, in turn, recipient communities. We also discussed how these might translate into changes in the structure of food webs and the functioning of invaded ecosystems. Finally we discussed how these perspectives could interact with the management of invasive species.


2010 ◽  
Vol 277 (1697) ◽  
pp. 3203-3212 ◽  
Author(s):  
Michaela Hau ◽  
Robert E. Ricklefs ◽  
Martin Wikelski ◽  
Kelly A. Lee ◽  
Jeffrey D. Brawn

Steroid hormones have similar functions across vertebrates, but circulating concentrations can vary dramatically among species. We examined the hypothesis that variation in titres of corticosterone (Cort) and testosterone (T) is related to life-history traits of avian species. We predicted that Cort would reach higher levels under stress in species with higher annual adult survival rates since Cort is thought to promote physiological and behavioural responses that reduce risk to the individual. Conversely, we predicted that peak T during the breeding season would be higher in short-lived species with high mating effort as this hormone is known to promote male fecundity traits. We quantified circulating hormone concentrations and key life-history traits (annual adult survival rate, breeding season length, body mass) in males of free-living bird species during the breeding season at a temperate site (northern USA) and a tropical site (central Panama). We analysed our original data by themselves, and also combined with published data on passerine birds to enhance sample size. In both approaches, variation in baseline Cort (Cort0) among species was inversely related to breeding season length and body mass. Stress-induced corticosterone (MaxCort) also varied inversely with body mass and, as predicted, also varied positively with annual adult survival rates. Furthermore, species from drier and colder environments exhibited lower MaxCort than mesic and tropical species; T was lowest in species from tropical environments. These findings suggest that Cort0, MaxCort and T modulate key vertebrate life-history responses to the environment, with Cort0 supporting energetically demanding processes, MaxCort promoting survival and T being related to mating success.


Sign in / Sign up

Export Citation Format

Share Document