Hull Condition Monitoring and Lifetime Estimation by the Combination of On-Board Sensing and Digital Twin Technology

2021 ◽  
Author(s):  
Tadashi Sugimura ◽  
Shunsaku Matsumoto ◽  
Soichiro Inoue ◽  
Shin Terada ◽  
Satoshi Miyazaki

Abstract The industries using floating facilities such as FPSO and offshore wind turbine are increasing. Since these vessels have been fixed and operated in the installed area for a long period of time, they cannot be regularly docked, inspected and repaired as opposed to normal ship case, and limited to the inspection of the hull outer plates from under the water and the inspection of inside the tanks are conducted once every five years. These inspections involving visual inspections and thickness measurements at representative points, only examine the current state, and don’t evaluate quantitatively the future potential (remaining life) over the subsequent long operation period. To predict residual life in order to maintain the integrity of these structures, digital twin technology is proposed to realize this demand. This paper shows the method to develop digital twin assessment which solve the insufficiency of conventional monitoring and simulation method in order to utilize for risk-based inspection (RBI) and condition-based maintenance (CBM) to the operators.

Author(s):  
Farid K. Moghadam ◽  
Geraldo F. de S. Rebouças ◽  
Amir R. Nejad

AbstractThis paper presents a multi-degree of freedom torsional model of drivetrain system as the digital twin model for monitoring the remaining useful lifetime of the drivetrain components. An algorithm is proposed for the model identification, which receives the torsional response and estimated values of rotor and generator torques, and calculates the drivetrain dynamic properties, e.g. eigenvalues, and torsional model parameters. The applications of this model in prediction of gearbox remaining useful lifetime is discussed. The proposed method is computationally fast, and can be implemented by integrating with the current turbine control and monitoring system without a need for a new system and sensors installation. A test case, using 5 MW reference drivetrain, has been demonstrated.


2013 ◽  
Vol 477-478 ◽  
pp. 109-113
Author(s):  
Bin Bin Lai ◽  
Cheng Bi Zhao ◽  
Xiao Ming Chen ◽  
You Hong Tang ◽  
Wei Lin

With the mature of floating offshore wind turbine technology, floating wind farm building in the deep sea becomes an inevitable trend. In the design of floating offshore wind turbine, the change of structural form is the main factor influencing hydrodynamic performance. This research, taking a typical sea condition in China's coastal areas as the object of study, designs a novel semi-submersible foundation for NREL 5 MW offshore wind turbine in 200 m deep water. In the design, deep-draft buoys structures are used to reduce the force of waves on the floating offshore, while damping structures are used to optimize the stability of wind turbine and reduce the heave amplitude. By means of numerical simulation method, the hydrodynamic performance of semi-submersible support is studied. Meanwhile, the response amplitude operators (RAOs) and the wave response motions of platform are calculated. The results in time domain indicate that the floating wind turbine system can keep safe and survive in the harsh sea condition, coupling wind, waves and currents. It is showed that the designed semi-submersible support of platform has excellent hydrodynamic performance. This change of structural form may serve as a reference on the development of offshore wind floating platform.


Author(s):  
Tomoaki Utsunomiya ◽  
Tomoki Sato ◽  
Hidekazu Matsukuma ◽  
Kiyokazu Yago

In this paper, motion of a SPAR-type floating offshore wind turbine (FOWT) subjected to wave loadings is examined. The proposed prototype FOWT mounts a 2MW wind turbine of down-wind type, whose rotor diameter is 80m and hub-height 55m. The SPAR-type floating foundation measures 60m in draft, having circular sections whose diameter is 12m at the lower part, 8.4m at the middle (main) part and 4.8m at the upper part. The FOWT is to be moored by a conventional anchor-chain system. In order to design such a FOWT system, it is essential to predict the motion of the FOWT subjected to environmental loadings such as irregular waves, turbulent winds, currents, etc. In this paper, the motion of the FOWT subjected to regular and irregular waves is examined together with the application of steady horizontal force corresponding to steady wind. The wave-tank experiment is made in the deep sea wave-basin at NMRI (National Maritime Research Institute), using a 1/22.5 scale model of the prototype FOWT. The experimental results are compared with the numerical simulation results for validation of the simulation method.


2021 ◽  
Vol 232 ◽  
pp. 109168
Author(s):  
Mengmeng Wang ◽  
Chengye Wang ◽  
Anna Hnydiuk-Stefan ◽  
Shizhe Feng ◽  
Incecik Atilla ◽  
...  

Author(s):  
Sharath Srinivasamurthy ◽  
Kazuhiro Iijima ◽  
Yasunori Nihei ◽  
Naoyuki Hara

In this research, a coupled numerical simulation method for a Floating Offshore Wind Turbine (FOWT) is developed. Flexibility of the platform and blade pitch control malfunction can be accounted for by the proposed method. The numerical method is validated qualitatively against a series of scaled model experiment and further simulations are carried out to predict the structural load due to the abrupt failure of blade pitch control system. The influence of blade pitch malfunction for a FOWT is confirmed by utilizing a SPAR and a semi-submersible type floaters and compared against onshore wind turbine case. The behavior and tendency for combined effect of wind and wave is compared and the tool developed is validated. It is found that the abrupt change of the rotor thrust induces the tower flexible modes for the onshore case while almost rigid body motions are the dominant for the floater cases with almost no excitation of the flexible vibration mode. The maximum bending moment after malfunction is almost comparable among the onshore and floating cases however it is observed that the time duration during which the vertical bending moment takes the largest value is different.


Author(s):  
Chong Ma ◽  
Kazuhiro Iijima ◽  
Yasunori Nihei

In this research, a numerical simulation method for a coupled system of a Floating Offshore Wind Turbine (FOWT) and its mooring system is developed. Flexibility of the platform and the nonlinear properties of mooring can be accounted for by the proposed method. A series of scaled model experiments which include the TLP and SPAR types of FOWT are also performed to evaluate the response of the FOWTs under combined wind and wave loads. Steady wind and regular waves are applied to the models. Measurements are made on strains in the structure, tension variation in the mooring as well as the rigid body motions of the platform. For validating the numerical model, comparison between the experimental and simulation results is made. An acceptable correlation between the experimental and the simulation results is obtained. It is shown that the flexibility of the platform may affect the tension variation in the mooring.


Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.


Sign in / Sign up

Export Citation Format

Share Document