Strongly Coupled Method for Predicting the Response of Flexible FOWT With Mooring and its Experimental Validation

Author(s):  
Chong Ma ◽  
Kazuhiro Iijima ◽  
Yasunori Nihei

In this research, a numerical simulation method for a coupled system of a Floating Offshore Wind Turbine (FOWT) and its mooring system is developed. Flexibility of the platform and the nonlinear properties of mooring can be accounted for by the proposed method. A series of scaled model experiments which include the TLP and SPAR types of FOWT are also performed to evaluate the response of the FOWTs under combined wind and wave loads. Steady wind and regular waves are applied to the models. Measurements are made on strains in the structure, tension variation in the mooring as well as the rigid body motions of the platform. For validating the numerical model, comparison between the experimental and simulation results is made. An acceptable correlation between the experimental and the simulation results is obtained. It is shown that the flexibility of the platform may affect the tension variation in the mooring.

Author(s):  
Ioannis K. Chatjigeorgiou ◽  
Konstantinos Chatziioannou ◽  
Vanessa Katsardi ◽  
Apostolos Koukouselis ◽  
Euripidis Mistakidis

The purpose of this work is to examine a three-legged jacket tower support system subjected to wave loading. To this end, linear as well as nonlinear wave scenarios are investigated. The structure was designed for offshore wind turbines installed in intermediate water depths. The phenomenon of the wave-structure interaction is examined experimentally with a 1:18 scaled model as well as numerically with the use of Finite Element Model (FEM). The structural calculations were performed using the structural analysis software SAP2000, which was enhanced by a special programming interface that was developed to calculate the wave loading and to directly apply the wave loads on the structural members. The FEM model in combination with the key parameters that are taken into account, provides a good correlation with the experimental results. The wave theories of Airy and Stokes 5th are employed for the calculation of the wave particle kinematics. The resulting wave forces are examined both in the frequency and in the time domain.


Author(s):  
K. Iijima ◽  
M. Kawai ◽  
Y. Nihei ◽  
M. Murai ◽  
T. Ikoma

A new design concept of a semi-submersible type floating offshore wind turbine (FOWT) moored by a single-point mooring is proposed. The FOWT model adopting 5MW class wind turbine is designed. The motion characteristics of the FOWT are evaluated by a series of tank tests. To this end, a scaled model with a scale ratio 1/100 is fabricated. The scaled mode tests are performed under winds, waves, and combined winds and waves to check its fundamental feasibility. It is observed that the motion characteristics under wind and waves are acceptable in general, and the combination of the single point mooring and the down-wind type rotor is effective in terms of weathervane. It is also shown that the difference between the two transfer functions to wave loads, one with and the other without wind loads, is small except pitch response at low frequencies.


Author(s):  
Sharath Srinivasamurthy ◽  
Kazuhiro Iijima ◽  
Yasunori Nihei ◽  
Naoyuki Hara

In this research, a coupled numerical simulation method for a Floating Offshore Wind Turbine (FOWT) is developed. Flexibility of the platform and blade pitch control malfunction can be accounted for by the proposed method. The numerical method is validated qualitatively against a series of scaled model experiment and further simulations are carried out to predict the structural load due to the abrupt failure of blade pitch control system. The influence of blade pitch malfunction for a FOWT is confirmed by utilizing a SPAR and a semi-submersible type floaters and compared against onshore wind turbine case. The behavior and tendency for combined effect of wind and wave is compared and the tool developed is validated. It is found that the abrupt change of the rotor thrust induces the tower flexible modes for the onshore case while almost rigid body motions are the dominant for the floater cases with almost no excitation of the flexible vibration mode. The maximum bending moment after malfunction is almost comparable among the onshore and floating cases however it is observed that the time duration during which the vertical bending moment takes the largest value is different.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3333
Author(s):  
Maria del Cisne Feijóo ◽  
Yovana Zambrano ◽  
Yolanda Vidal ◽  
Christian Tutivén

Structural health monitoring for offshore wind turbine foundations is paramount to the further development of offshore fixed wind farms. At present time there are a limited number of foundation designs, the jacket type being the preferred one in large water depths. In this work, a jacket-type foundation damage diagnosis strategy is stated. Normally, most or all the available data are of regular operation, thus methods that focus on the data leading to failures end up using only a small subset of the available data. Furthermore, when there is no historical precedent of a type of fault, those methods cannot be used. In addition, offshore wind turbines work under a wide variety of environmental conditions and regions of operation involving unknown input excitation given by the wind and waves. Taking into account the aforementioned difficulties, the stated strategy in this work is based on an autoencoder neural network model and its contribution is two-fold: (i) the proposed strategy is based only on healthy data, and (ii) it works under different operating and environmental conditions based only on the output vibration data gathered by accelerometer sensors. The proposed strategy has been tested through experimental laboratory tests on a scaled model.


2021 ◽  
Vol 9 (2) ◽  
pp. 179
Author(s):  
Giovanni Amaral ◽  
Pedro Mello ◽  
Lucas do Carmo ◽  
Izabela Alberto ◽  
Edgard Malta ◽  
...  

The present work highlights some of the dynamic couplings observed in a series of tests performed in a wave basin with a scaled-model of a Floating Offshore Wind Turbine (FOWT) with semi-submersible substructure. The model was moored by means of a conventional chain catenary system and an actively controlled fan was used for emulating the thrust loads during the tests. A set of wave tests was performed for concomitant effects of not aligned wave and wind. The experimental measurements illustrate the main coupling effects involved and how they affect the FOWT motions in waves, especially when the floater presents a non-negligible tilt angle. In addition, a frequency domain numerical analysis was performed in order to evaluate its ability to capture these effects properly. The influence of different modes of fan response, floater trim angles (changeable with ballast compensation) and variations in the mooring stiffness with the offsets were investigated in the analysis. Results attest that significant changes in the FOWT responses may indeed arise from coupling effects, thus indicating that caution must be taken when simplifying the hydrodynamic frequency-domain models often used as a basis for the simulation of FOWTs in waves and in optimization procedures for the design of the floater and mooring lines.


2021 ◽  
Author(s):  
Zhiyong Yang ◽  
Xiaoqiang Bian ◽  
Yu Shi

Abstract In the near future, the offshore wind industry will experience a significant increase of turbine size and of floating wind development activities. A floating offshore wind turbine foundation offers many advantages, such as flexibility in site selection, access to better offshore wind resources, and quayside integration to avoid a costly heavy lift vessel offshore campaign. PyraWind™ is a patented three canted column semisubmersible floating foundation for ultra large offshore wind turbines. It is designed to accommodate a wind turbine, 14 MW or larger, in the center of the interconnected columns of the hull with minimal modifications to the tower, nacelle and turbine. The pyramid-shaped hull provides a stable, solid foundation for the large wind turbine under development. This paper summarizes the feasibility study conducted for the PyraWind™ concept. The design basis for wind turbine floating foundations is described and the regulatory requirements are discussed. Also included are the hydrodynamic analysis of the hull and ongoing work consisting of coupling hull hydrodynamics with wind-turbine aerodynamic loads. The fully coupled system was analyzed using OpenFAST, an aerodynamic software package for wind turbine analysis with the ability to be coupled with the hydrodynamic model. Due to the canted columns, a nonlinear analysis was performed using the coupled numerical hydrodynamic model of the platform with mooring system in extreme sea states.


Author(s):  
G. K. V. Ramachandran ◽  
H. Bredmose ◽  
J. N. Sørensen ◽  
J. J. Jensen

A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison’s equation, aerodynamic loads are modelled by means of unsteady Blade-Element-Momentum (BEM) theory, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic conditions. The platform responses show an influence from the aerodynamic loads, most clearly through a quasi-steady mean surge and pitch response associated with the mean wind. Further, the aerodynamic loads show an influence from the platform motion through more fluctuating rotor loads, which is a consequence of the wave-induced rotor dynamics. In the absence of a controller scheme for the wind turbine, the rotor torque fluctuates considerably, which induces a growing roll response especially when the wind turbine is operated nearly at the rated wind speed. This can be eliminated either by appropriately adjusting the controller so as to regulate the torque or by optimizing the floater or tendon dimensions, thereby limiting the roll motion. Loads and coupled responses are predicted for a set of load cases with different wave headings. Based on the results, critical load cases are identified and discussed. As a next step (which is not presented here), the dynamic model for the substructure is therefore being coupled to an advanced aero-elastic code Flex5, Øye (1996), which has a higher number of DOFs and a controller module.


2020 ◽  
Vol 8 (11) ◽  
pp. 859
Author(s):  
Thanh-Dam Pham ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) have been installed in Europe and Japan with relatively modern technology. The installation of floating wind farms in deep water is recommended because the wind speed is stronger and more stable. The design of the FOWT must ensure it is able to withstand complex environmental conditions including wind, wave, current, and performance of the wind turbine. It needs simulation tools with fully integrated hydrodynamic-servo-elastic modeling capabilities for the floating offshore wind turbines. Most of the numerical simulation approaches consider only first-order hydrodynamic loads; however, the second-order hydrodynamic loads have an effect on a floating platform which is moored by a catenary mooring system. At the difference-frequencies of the incident wave components, the drift motion of a FOWT system is able to have large oscillation around its natural frequency. This paper presents the effects of second-order wave loads to the drift motion of a semi-submersible type. This work also aimed to validate the hydrodynamic model of Ulsan University (UOU) in-house codes through numerical simulations and model tests. The NREL FAST code was used for the fully coupled simulation, and in-house codes of UOU generates hydrodynamic coefficients as the input for the FAST code. The model test was performed in the water tank of UOU.


Author(s):  
Ivan Ćatipović ◽  
Nastia Degiuli ◽  
Andreja Werner ◽  
Većeslav Čorić ◽  
Jadranka Radanović

Towing as a specific type of sea transport is often used for installing objects for drilling and exploitation of underwater gas and oil wells. Also, towing proved to be a cost-effective solution for the installation of the offshore wind turbine electric generators at sea locations. Because of the mass of these objects the need for towing increases progressively. Time domain numerical model for the wave-induced motions of a towed ship and the towline tension in regular head seas is presented in this paper. For the sake of simplicity, one end of the towing line is attached to ship’s bow and another end has prescribed straight line motion. All considerations are done in the vertical plane so the ship is modeled as a rigid body with three degrees of freedom. Hydrodynamic loadings due to waves are taken into account along with added mass and damping. Dynamics of the towing line is described by finite elements. Due to the nonlinear properties of the problem calculations are done in time domain. Comparison of the obtained numerical results is made with previously published results.


Sign in / Sign up

Export Citation Format

Share Document