From Data to Assessment Models, Demonstrated through a Digital Twin of Marine Risers

2021 ◽  
Author(s):  
Ehsan Kharazmi ◽  
Zhicheng Wang ◽  
Dixia Fan ◽  
Samuel Rudy ◽  
Themis Sapsis ◽  
...  

Abstract Assessing the fatigue damage in marine risers due to vortex-induced vibrations (VIV) serves as a comprehensive example of using machine learning methods to derive assessment models of complex systems. A complete characterization of response of such complex systems is usually unavailable despite massive experimental data and computation results. These algorithms can use multi-fidelity data sets from multiple sources, including real-time sensor data from the field, systematic experimental data, and simulation data. Here we develop a three-pronged approach to demonstrate how tools in machine learning are employed to develop data-driven models that can be used for accurate and efficient fatigue damage predictions for marine risers subject to VIV.

2021 ◽  
Vol 73 (10) ◽  
pp. 65-66
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30985, “From Data to Assessment Models, Demonstrated Through a Digital Twin of Marine Risers,” by Ehsan Kharazmi and Zhicheng Wang, Brown University, and Dixia Fan, SPE, Massachusetts Institute of Technology, et al., prepared for the 2021 Offshore Technology Conference, Houston, 16–19 August. The paper has not been peer reviewed. Copyright 2021 Offshore Technology Conference. Reproduced by permission. Assessing fatigue damage in marine risers caused by vortex-induced vibrations (VIV) serves as a comprehensive example of using machine-learning methods to derive assessment models of complex systems. A complete characterization of the response of such complex systems usually is unavailable despite massive experimental data and computation results. These algorithms can use multifidelity data sets from multiple sources. In the complete paper, the authors develop a three-pronged approach to demonstrate how tools in machine learning are used to develop data-driven models that can be used for accurate and efficient fatigue-damage predictions for marine risers subject to VIV. Introduction In this study, machine-learning tools are developed to construct a digital twin of a marine riser. The digital twin uses various sources of training data, including field data, experimental data, computational-fluid-dynamics simulations, extracted databases, semiempirical codes, and existing knowledge of underlying physical models. The authors also show that a well-trained digital twin can use the streaming data from a few field sensors efficiently to provide an accurate reconstruction of motion and to provide fatigue-damage prediction. Several machine-learning algorithms have been developed in the literature to predict the life span of the structure through the changes in parameters. To the best of the authors’ knowledge, most existing methods are developed as black boxes that return parameters by only feeding experimental data and therefore are ignorant of the underlying physics. In the first of three approaches, the authors enhance the capabilities of semiempirical codes by developing efficient databases through active learning. In the second approach, the LSTM-ModNet framework is applied to reconstruct and analyze the entire motion of a riser in deep water from sensor measurements through modal decomposition in space and the sequence-learning capability of recurrent neural networks in time. The formulation described in the paper provides a tool that efficiently combines different types of sensor measurements, such as strain and acceleration. In the third approach, a higher level of abstraction is introduced and the nonlinear operator that maps the inflow current velocity to the root-mean-square function of the riser response is approximated. In particular, the newly developed neural network DeepONet is used as a black box to learn the mapping between the input parameters (the inflow velocity, riser bending stiffness, and tension as a function of water depth) to the output parameters (strain, amplitude, and exciting frequencies as a function of water depth). In these approaches, data from the high-mode VIV test is used to train the networks.


Author(s):  
Paul Rippon ◽  
Kerrie Mengersen

Learning algorithms are central to pattern recognition, artificial intelligence, machine learning, data mining, and statistical learning. The term often implies analysis of large and complex data sets with minimal human intervention. Bayesian learning has been variously described as a method of updating opinion based on new experience, updating parameters of a process model based on data, modelling and analysis of complex phenomena using multiple sources of information, posterior probabilistic expectation, and so on. In all of these guises, it has exploded in popularity over recent years.


2015 ◽  
Vol 713-715 ◽  
pp. 1877-1881
Author(s):  
Fang Chun Jiang ◽  
Sheng Feng Tian

Confidence regression is a significant research field of confidence machine learning. This paper adopts KNN algorithm as a tool, and performs error evaluation on results of regressive learning to classify the accept field and the refuse field so as to achieve the confidence regression. By setting specific error value, this approach achieves controllable confidence regression, which has been tested on experimental data of bodyfat and other data sets. The experimental results presented show the feasibility of our approach.


2020 ◽  
Author(s):  
Yosoon Choi ◽  
Jieun Baek ◽  
Jangwon Suh ◽  
Sung-Min Kim

<p>In this study, we proposed a method to utilize a multi-sensor Unmanned Aerial System (UAS) for exploration of hydrothermal alteration zones. This study selected an area (10m × 20m) composed mainly of the andesite and located on the coast, with wide outcrops and well-developed structural and mineralization elements. Multi-sensor (visible, multispectral, thermal, magnetic) data were acquired in the study area using UAS, and were studied using machine learning techniques. For utilizing the machine learning techniques, we applied the stratified random method to sample 1000 training data in the hydrothermal zone and 1000 training data in the non-hydrothermal zone identified through the field survey. The 2000 training data sets created for supervised learning were first classified into 1500 for training and 500 for testing. Then, 1500 for training were classified into 1200 for training and 300 for validation. The training and validation data for machine learning were generated in five sets to enable cross-validation. Five types of machine learning techniques were applied to the training data sets: k-Nearest Neighbors (k-NN), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Deep Neural Network (DNN). As a result of integrated analysis of multi-sensor data using five types of machine learning techniques, RF and SVM techniques showed high classification accuracy of about 90%. Moreover, performing integrated analysis using multi-sensor data showed relatively higher classification accuracy in all five machine learning techniques than analyzing magnetic sensing data or single optical sensing data only.</p>


Author(s):  
Gro Sagli Baarholm ◽  
Carl M. Larsen ◽  
Halvor Lie ◽  
Kim Mo̸rk ◽  
Trond Stokka Meling

This paper presents a novel approach for approximate calculation of the fatigue damage from vortex-induced vibrations (VIV) of marine risers. The method is based on experience from a large number of laboratory tests with models of full-length risers, large-scale tests and also full-scale measurements. The method is intended to provide a conservative result and be used for screening purposes at the early design stage. The model is in particular aimed at predicting fatigue for risers that respond at very high mode orders (above 10), but may as well yield valid results for lower mode numbers. The model will, however, not be adequate for free span pipelines or other structures that normally will respond at first and second mode. The riser will be defined in terms of some key parameters like length, weight, tension, hydrodynamic diameter and stress diameter. A current profile perpendicular to the riser in one plane must be known. The program will apply a simple model for calculation of eigenfrequencies and mode shapes, and these are sorted into in-line (IL) and cross-flow (CF) bins. An effective current velocity and excitation length can be defined from the profile and will be applied to identify the dominating cross-flow response frequency and the total displacement rms value. The dominating in-line response frequency is taken as twice the cross-flow frequency, and inline response rms is taken as a given portion of the cross-flow rms value. A set of contributing modes is defined from an assumed frequency bandwidth that reflects observed bandwidths, but also modal composition for cases with discrete frequency response. A simple mode superposition technique is then used to find the set of modes that gives the identified rms values. Bending stresses will be found directly from the curvature of the mode shapes. Fatigue damage will be found from stress rms values, user defined stress concentration factor and given SN curves. The model has been implemented in a simple computer program and verified by comparing results to measurements. The ambition has not been to obtain an exact match between computed results and observations, but to verify that the model gives reasonable but conservative results in almost all cases. However, an unrealistic over prediction of the fatigue damage is not desired. The results are promising, but the need for more information from measurements and response analyses with programs like VIVANA and SHEAR7 is still obvious.


Author(s):  
Paul Rippon ◽  
Kerrie Mengersen

Learning algorithms are central to pattern recognition, artificial intelligence, machine learning, data mining, and statistical learning. The term often implies analysis of large and complex data sets with minimal human intervention. Bayesian learning has been variously described as a method of updating opinion based on new experience, updating parameters of a process model based on data, modelling and analysis of complex phenomena using multiple sources of information, posterior probabilistic expectation, and so on. In all of these guises, it has exploded in popularity over recent years.


2020 ◽  
Vol 2 (1) ◽  
pp. 54
Author(s):  
Rok Novak ◽  
David Kocman ◽  
Johanna Amalia Robinson ◽  
Tjaša Kanduč ◽  
Denis Sarigiannis ◽  
...  

The merge of new sensing technologies with machine learning methods can be used as a tool to recognize complex activities. A wearable particulate matter (PM) sensor, in combination with a motion tracker, was provided to 97 individuals for 7 days in two seasons. These data sets were used in three different models, constructed by the classification of activity. Using algorithms IBk, J48 and RandomForest for hourly (minute) values, an accuracy of 31.0 (23.1)%, 28.6 (22.0)% and 35.7 (23.0)%, respectively, was achieved. Most misclassified instances concern vaguely defined activities. Low accuracy can also be explained with the differences in time scales. The accuracy could be improved by more clearly defining the activities and collecting per-minute data.


2020 ◽  
Author(s):  
Nika Abdollahi ◽  
Anne de Septenville ◽  
Frédéric Davi ◽  
Juliana S. Bernardes

MotivationThe adaptive B-cell response is driven by the expansion, somatic hypermutation, and selection of B-cell clones. Their number, size and sequence diversity are essential characteristics of B-cell populations. Identifying clones in B-cell populations is central to several repertoire studies such as statistical analysis, repertoire comparisons, and clonal tracking. Several clonal grouping methods have been developed to group sequences from B-cell immune repertoires. Such methods have been principally evaluated on simulated benchmarks since experimental data containing clonally related sequences can be difficult to obtain. However, experimental data might contains multiple sources of sequence variability hampering their artificial reproduction. Therefore, the generation of high precision ground truth data that preserves real repertoire distributions is necessary to accurately evaluate clonal grouping methods.ResultsWe proposed a novel methodology to generate ground truth data sets from real repertoires. Our procedure requires V(D)J annotations to obtain the initial clones, and iteratively apply an optimisation step that moves sequences among clones to increase their cohesion and separation. We first showed that our method was able to identify clonally-related sequences in simulated repertoires with higher mutation rates, accurately. Next, we demonstrated how real benchmarks (generated by our method) constitute a challenge for clonal grouping methods, when comparing the performance of a widely used clonal grouping algorithm on several generated benchmarks. Our method can be used to generate a high number of benchmarks and contribute to construct more accurate clonal grouping tools.Availability and implementationThe source code and generated data sets are freely available at github.com/NikaAb/BCR_GTG


2014 ◽  
Vol 1079-1080 ◽  
pp. 851-855
Author(s):  
Fang Chun Jiang ◽  
Sheng Feng Tian

Manageable confidence machine learning is one of the important approaches to implement confidence machine application. This paper is based on two class confidence classifier, adopting two class classifier as tool to convert learning results of classifiers and achieve confidence management through setting threshold values. The research accomplished manageable general accuracy of the classification and manageable positive/negative classification accuracy. Such method is tested in 5 experimental data sets of cardiopathy and diabetes, achieved preferable research result.


Sign in / Sign up

Export Citation Format

Share Document