Normalized Modulus Reduction and Damping Ratio Curves for Bay of Campeche Calcareous Clay to Carbonate Mud

2021 ◽  
Author(s):  
Victor Manuel Taboada ◽  
Shuang Cindy Cao ◽  
Francisco Alonso Flores Lopez ◽  
Diego Cruz Roque ◽  
Procoro Barrera Nabor

Abstract Equations to calculate the modulus reduction curve (G/Gmax-γ) and material damping ratio curve (D-γ) of calcareous clay and clayey carbonate mud of the Bay of Campeche and Tabasco Coastline are developed. This was achieved using a database of 156 resonant column tests and 468 strain-controlled cyclic direct simple shear tests performed in clays with 10 % ≤ CaCO3 ≤90 %. The effects of carbonate content (CaCO3), mean effective confining pressure (σ′m), plasticity index (PI), and overconsolidation ratio (OCR) on the shape of the modulus reduction and material damping ratio curves are shown based on the available laboratory data and the equations developed to calculate these curves. It is shown that as CaCO3 increases, the normalized shear modulus (G/Gmax) curve tends to shift downward and the damping ratio (D) curve tends to shift upward; as σ′m and PI increase, the G/Gmax curve tends to shift upward and the damping ratio curve tends to shift downward; and the value of OCR has practically no effect on the position of the curves. The validation of the calculated values of G/Gmax and D shows the best predictions are found at low shear strains for G/Gmax and at large shear strains for D, falling within ± 25 % of the measured values, and shows that due to limitations in the model at large strains (γ > 1 %) for G/Gmax and at low strains (γ < 0.05 %) for D, the calculated values fall within ± 50 % of the measured values. The equations developed to calculate the curves of G/Gmax-γ and D-γ of calcareous clay and clayey carbonate mud are recommended for preliminary or perhaps even final seismic site response evaluations. However, considering the scatter of the data points around the curves, the equations should be used with caution, and parametric and sensitivity studies are strongly recommended to assess the importance of this scatter. In large critical projects, direct experimental determinations of G/Gmax and D for the soils of interest are suggested to be more appropriate.

Author(s):  
VM Taboada ◽  
V Dantal ◽  
D Cruz Roque ◽  
FA Flores Lopez ◽  
RE Vazquez Monroy ◽  
...  

Author(s):  
Celestino Valle ◽  
Kenneth H. Stokoe

Comparisons of the dynamic properties of intact and remolded offshore clay specimens has been carried out. The clay specimens were obtained from Campeche Bay, offshore Mexico. Combined resonant column and torsional shear (RCTS) equipment at the University of Texas at Austin was used to determine the dynamic soil properties. Each soil specimen was tested twice, first in the intact condition and second as remolded material. Remolding was done by kneading the intact material and then reforming the specimen by compacting in a mold. The effects on the dynamic properties, expressed by shear modulus and material damping ratio, between intact and remolded conditions are discussed. As expected, shear modulus and material damping at small and large strains are affected by remolding. Interestingly, the normalized modulus degradation curves were changed very little by remolding up to strains between 0.06 and 0.1%. The results offer insight into the effects of sampling disturbance on linear and nonlinear dynamic soil properties.


2016 ◽  
Author(s):  
Victor M. Taboada ◽  
Vishal Dantal ◽  
Diego Cruz Roque ◽  
Francisco Flores Lopez ◽  
Procoro Barrera Nabor

2021 ◽  
Vol 143 ◽  
pp. 106581
Author(s):  
Juehao Huang ◽  
Jian Chen ◽  
Wenhui Ke ◽  
Yu Zhong ◽  
Yuan Lu ◽  
...  

2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2011 ◽  
Vol 374-377 ◽  
pp. 1391-1395
Author(s):  
Xue Song Lu ◽  
Wei Xiang

Based on the red clay of Wuhan reinforced by Ionic Soil Stabilizer, the red clay soil is treated by different matches of ISS at first, then is tested in the Atterberg limits test and dynamic triaxia test. The results show that the plastic index decreases, and the red clay were greatly improved under the dynamic condition, the maximum dynamic shear modulus ratio acquired an incensement of 27.72% on average after mixing the ISS into the red clay. In addition, It was concluded that the confining pressure influenced the dynamic shear modulus and damping ratio to a certain extent. Given the same strain conditions, with the incensement of confining pressure increases, the dynamic shear modulus increased and the damping ratio decreased. Moreover, when plotting the dynamic shear modulus versus the dynamic shear strain, the similar curve can be formed for both the natural soil and the modified one, the dynamic shear modulus monotonously decreased with the incensement of the dynamic shear strain. However, the value of dynamic shear modulus differed in the same shear strain between the natural soil and the soil modified by ISS.


2020 ◽  
Vol 26 ◽  
pp. 64-70
Author(s):  
Veronika Pavelcová ◽  
Tereza Poklopová ◽  
Michal Šejnoha ◽  
Tomáš Janda

The paper describes a finite element simulation of the response of a real underground structure subjected to earthquake using GEO5 FEM program. It concentrates on the influence of material damping with respect to a specific type of boundary condition prescribed at the bottom of the analyzed domain. It is seen that considering material damping is inevitable particularly in case of so called fixed boundary conditions to arrive at meaningful results. This is demonstrated on an artificial earthquake generated according to a design spectrum defined in Eurocode 8. A viscous damping ratio combined with the results of eigenvalue analysis is used to derive parameters of Rayleigh damping for three specific scenarios promoting the approach based on the lowest natural frequency as sufficiently accurate for the present task.


2011 ◽  
Vol 243-249 ◽  
pp. 2050-2054 ◽  
Author(s):  
Pei Hsun Tsai ◽  
Sheng Huoo Ni

In this paper the dynamic property (shear modulus and damping ratio) of cement-stabilized soil is studied with using the resonant column test. The amount of cement admixed, the magnitude of confining pressure, and shearing strain amplitude are the parameters considered. Test results show that the maximum shear modulus of cement-stabilized soil increases with increasing confining pressure, the minimum damping ratio decreases with increasing confining pressure. The shear modulus of cement-stabilized soil decreases with increasing shearing strain while the damping ratio increases with increasing shearing strain. In the paper the relationship of shear modulus versus shearing strain is fitted into the Ramberg-Osgood equations using regression analysis.


2020 ◽  
Vol 12 (4) ◽  
pp. 1616 ◽  
Author(s):  
Xianwen Huang ◽  
Aizhao Zhou ◽  
Wei Wang ◽  
Pengming Jiang

In order to support the dynamic design of subgrade filling engineering, an experiment on the dynamic shear modulus (G) and damping ratio (D) of clay–gravel mixtures (CGMs) was carried out. Forty-two groups of resonant column tests were conducted to explore the effects of gravel content (0%, 10%, 20%, 30%, 40%, 50%, and 60%, which was the mass ratio of gravel to clay), gravel shape (round and angular gravels), and confining pressure (100, 200, and 300 kPa) on the dynamic shear modulus, and damping ratio of CGMs under the same compacting power. The test results showed that, with the increase of gravel content, the maximum dynamic shear modulus of CGMs increases, the referent shear strain increases linearly, and the minimum and maximum damping ratios decrease gradually. In CGMs with round gravels, the maximum dynamic shear modulus and the maximum damping ratio are greater, and the referent shear strain and the minimum damping ratio are smaller, compared to those with angular gravels. With the increase of confining pressure, the maximum dynamic shear modulus and the referent shear strain increase nonlinearly, while the minimum and maximum damping ratios decrease nonlinearly. The predicting equation for the dynamic shear modulus and the damping ratio of CGMs when considering confining pressure, gravel content, and shape was established. The results of this research may put forward a solid foundation for engineering design considering low-strain-level mechanical performance.


2019 ◽  
Vol 56 (1) ◽  
pp. 14-22 ◽  
Author(s):  
DongSoon Park ◽  
Tadahiro Kishida

It is essential to obtain shear modulus reduction and damping ratio curves to perform dynamic analyses of earth-cored embankment dams. Many studies have been performed for dynamic properties of clayey soils, but they have been limited for earth core materials of dams. This study conducted resonant column tests to obtain shear modulus reduction (G/Gmax) and damping ratio (D) curves for 31 specimens (17 undisturbed and 14 remolded specimens) from 13 earth-cored embankment dams. Empirical G/Gmax and D curves are proposed for dynamic properties of clayey earth core materials. Fitting curves are provided by using the functional forms of the Ramberg–Osgood and Darendeli models. The observation shows that the undisturbed earth cores yield relatively higher G/Gmax and lower D curves than the remolded cores. G/Gmax curves of compacted earth cores are relatively higher than those of Vucetic and Dobry curves for a similar level of plasticity index. Uncertainty and bias are calculated by performing residual analysis, which shows that there is no clear bias in predicting G/Gmax and the uncertainties between undisturbed earth core materials and natural deposits are at a similar level. A proposed empirical relationship of G/Gmax and D curves for earth core materials can be utilized for dynamic analyses of embankment dams for cases where there is insufficient in situ data.


Sign in / Sign up

Export Citation Format

Share Document