Shear modulus reduction and damping ratio curves for earth core materials of dams

2019 ◽  
Vol 56 (1) ◽  
pp. 14-22 ◽  
Author(s):  
DongSoon Park ◽  
Tadahiro Kishida

It is essential to obtain shear modulus reduction and damping ratio curves to perform dynamic analyses of earth-cored embankment dams. Many studies have been performed for dynamic properties of clayey soils, but they have been limited for earth core materials of dams. This study conducted resonant column tests to obtain shear modulus reduction (G/Gmax) and damping ratio (D) curves for 31 specimens (17 undisturbed and 14 remolded specimens) from 13 earth-cored embankment dams. Empirical G/Gmax and D curves are proposed for dynamic properties of clayey earth core materials. Fitting curves are provided by using the functional forms of the Ramberg–Osgood and Darendeli models. The observation shows that the undisturbed earth cores yield relatively higher G/Gmax and lower D curves than the remolded cores. G/Gmax curves of compacted earth cores are relatively higher than those of Vucetic and Dobry curves for a similar level of plasticity index. Uncertainty and bias are calculated by performing residual analysis, which shows that there is no clear bias in predicting G/Gmax and the uncertainties between undisturbed earth core materials and natural deposits are at a similar level. A proposed empirical relationship of G/Gmax and D curves for earth core materials can be utilized for dynamic analyses of embankment dams for cases where there is insufficient in situ data.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2743
Author(s):  
Seongnoh Ahn ◽  
Jae-Eun Ryou ◽  
Kwangkuk Ahn ◽  
Changho Lee ◽  
Jun-Dae Lee ◽  
...  

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.


2011 ◽  
Vol 243-249 ◽  
pp. 2050-2054 ◽  
Author(s):  
Pei Hsun Tsai ◽  
Sheng Huoo Ni

In this paper the dynamic property (shear modulus and damping ratio) of cement-stabilized soil is studied with using the resonant column test. The amount of cement admixed, the magnitude of confining pressure, and shearing strain amplitude are the parameters considered. Test results show that the maximum shear modulus of cement-stabilized soil increases with increasing confining pressure, the minimum damping ratio decreases with increasing confining pressure. The shear modulus of cement-stabilized soil decreases with increasing shearing strain while the damping ratio increases with increasing shearing strain. In the paper the relationship of shear modulus versus shearing strain is fitted into the Ramberg-Osgood equations using regression analysis.


2020 ◽  
Vol 12 (4) ◽  
pp. 1616 ◽  
Author(s):  
Xianwen Huang ◽  
Aizhao Zhou ◽  
Wei Wang ◽  
Pengming Jiang

In order to support the dynamic design of subgrade filling engineering, an experiment on the dynamic shear modulus (G) and damping ratio (D) of clay–gravel mixtures (CGMs) was carried out. Forty-two groups of resonant column tests were conducted to explore the effects of gravel content (0%, 10%, 20%, 30%, 40%, 50%, and 60%, which was the mass ratio of gravel to clay), gravel shape (round and angular gravels), and confining pressure (100, 200, and 300 kPa) on the dynamic shear modulus, and damping ratio of CGMs under the same compacting power. The test results showed that, with the increase of gravel content, the maximum dynamic shear modulus of CGMs increases, the referent shear strain increases linearly, and the minimum and maximum damping ratios decrease gradually. In CGMs with round gravels, the maximum dynamic shear modulus and the maximum damping ratio are greater, and the referent shear strain and the minimum damping ratio are smaller, compared to those with angular gravels. With the increase of confining pressure, the maximum dynamic shear modulus and the referent shear strain increase nonlinearly, while the minimum and maximum damping ratios decrease nonlinearly. The predicting equation for the dynamic shear modulus and the damping ratio of CGMs when considering confining pressure, gravel content, and shape was established. The results of this research may put forward a solid foundation for engineering design considering low-strain-level mechanical performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dervis Volkan Okur ◽  
Seyfettin Umut Umu

Waste automobile tires are used as additives or replacements instead of traditional materials in civil engineering works. In geotechnical engineering, tires are shredded to certain sizes and mixed with soil, especially used as backfill material behind retaining walls or fill material for roadway embankments. Compared to soil, rubber has high damping capacity and low shear modulus. Therefore, it requires the determination of the dynamic characteristics of rubber/soil mixtures. In this paper, the cyclic behavior of recycled tire rubber and clean sand was studied, considering the effects of the amount and particle size of the rubber and confining stresses. A total of 40 stress-controlled tests were performed on an integrated resonant column and dynamic torsional shear system. The effects of the relative size and proportion of the rubber on the dynamic characteristics of the mixtures are discussed. The dynamic properties, such as the maximum shear modulus, strain-dependent shear modulus, and damping ratio, are examined. For practical purposes, simple empirical relationships were formulated to estimate the maximum shear modulus and the damping ratio. The change in the shear modulus and damping ratio with respect to shear strain with 5% of rubber within the mixture was found to be close to the behavior of clean sand.


2006 ◽  
Vol 43 (6) ◽  
pp. 601-617 ◽  
Author(s):  
Y -H Wang ◽  
W -K Siu

This paper reports the effects of structure on the mechanical responses of kaolinite with known and controlled fabric associations. The dynamic properties and strength were assessed by resonant column tests and undrained triaxial compression tests, respectively. The experimental results demonstrate that interparticle forces and associated fabric arrangements influence the volumetric change under isotropic compression. Soils with different structures have individual consolidation lines, and the merging trend is not readily seen under an isotropic confinement up to 250 kPa. The dynamic properties of kaolinite were found to be intimately related to the soil structure. Stronger interparticle forces or higher degrees of flocculated structure lead to a greater small-strain shear modulus, Gmax, and a lower associated damping ratio, Dmin. The soil structure has no apparent influence on the critical-state friction angle (ϕ′c = 27.5°), which suggests that the critical stress ratio does not depend on interparticle forces. The undrained shear strength of kaolinite is controlled by its initial packing density rather than by any interparticle attractive forces, and yet the influence of the structure on the effective stress path is obvious.Key words: interparticle forces, shear modulus, damping ratio, stress–strain behavior, undrained shear strength, critical state.


2019 ◽  
Vol 9 (9) ◽  
pp. 1897
Author(s):  
Song-Hun Chong

This paper proposes a theoretical framework for the characterization of the strain-dependent dynamic properties of soils. The analysis begins with an analytical constitutive model for soils under steady-state cyclic loading. The model describes the dominant soil characteristics, i.e., the hysteresis and nonlinearity with an intrinsic material property α, which physically represents the degree of the hysteresis nonlinearity in a medium. Explicit formulas for the backbone curve, tangent shear modulus, secant shear modulus, and damping ratio as a function of shear strain are derived directly from the constitutive model. A procedure is then developed to determine the parameter α in which the derived damping ratio equation is fitted to damping ratio data measured from the resonant column test (RCT). Clay and sand under three different levels of confinement stress are considered in the numerical evaluation. The capability of the proposed theoretical framework in predicting strain-dependent soil properties and responses is demonstrated.


Author(s):  
Xiaobo Yu ◽  
Rui Sun ◽  
Xiaoming Yuan ◽  
Zhuoshi Chen ◽  
Jiuqi Zhang

The shear modulus and damping ratio of frozen soil are thebasic parameters of its dynamic properties and are often testedwith the dynamic triaxial apparatus. However, the resonantcolumn apparatus is more suitable for the testing at the microstrainlevel. A resonant column apparatus was here used toidentify the varying modes with negative temperature of theinitial shear modulus, modulus ratio, and damping ratio of frozensilt. Correction factor curves indicate that the temperaturehas a great effect on the shear modulus and damping ratio offrozen silt. The curves also show that, within the sensitive stage,the temperature significantly affects the modulus and damping.Within the insensitive stage, the modulus and dampingwere insensitive to the temperature. The experimental resultsand analysis given here provide support for improving seismicdesign codes and offer reasonable parameters for seismicresponse analysis in engineering construction in cold regions.


2020 ◽  
Vol 10 (7) ◽  
pp. 2559
Author(s):  
Andrzej Głuchowski ◽  
Zdzisław Skutnik ◽  
Marcin Biliniak ◽  
Wojciech Sas ◽  
Diego Lo Presti

The dynamic properties of compacted non-cohesive soils are desired not only because of the risk of natural sources of dynamic excitations such as earthquakes, but mostly because of the anthropogenic impact of machines that are working on such soils. These soils are often unsaturated, which positively affects the soil’s mechanical properties. The information about the values of these parameters is highly desirable for engineers. In this article, we performed a series of tests, including oedometric tests, resonant column tests, bender element tests, and unsaturated triaxial tests, to evaluate those characteristic parameters. The results showed that sandy silt soil has a typical reaction to dynamic loading in terms of shear modulus degradation and the damping ratio curves’ characteristics, which can be modeled by using empirical equations. We found that the compaction procedure caused an over-consolidation state dependent on the moisture content during compaction effort. The article analyzed the soil properties that impact the maximum shear modulus G0 value. Those properties were suction s, confining pressure σ3, and compaction degree represented by the void ratio function f(e).


Author(s):  
Meysam Bayat

Understanding the factors that influence the dynamic behavior of granular soils during cyclic loading is critical to infrastructure design. Previous research has lacked quantitative study of the effects of fouling index (FI), mean effective confining pressure, relative density, shear strain level and anisotropic consolidation, especially when the effective vertical stress is lower than the effective horizontal stress on the dynamic behavior of gravelly soils. The objective of the present study was to evaluate the dynamic behavior and volume change of both clean and fouled specimens for practical applications. To this end, cyclic triaxial tests with local strain measurements under both isotropic and anisotropic confining conditions were conducted. It is found that the fouled specimen with 50 % sand (i.e. the specimen which contains 50 % gravel and 50 % sand) has the highest shear modulus at low shear strain levels and the largest volume reduction and damping ratio at large shear strain levels. The results of tests indicate that the effect of fouling index on the shear modulus is reduced at large shear strain levels. Volumetric contraction due to the increase in mean effective confining pressure is more significant at large shear strain levels. The results also indicate that the stiffness of the specimens under anisotropic compression mode are larger than those in extension or isotropic mode.


Author(s):  
S. H. Ni ◽  
C. H. Juang ◽  
P. C. Lu

Dynamic properties of soils are usually determined by time-consuming laboratory tests. This study presents a method for estimating dynamic soil parameters using artificial neural networks. A simple feedforward neural network with back-propagation training algorithm is used. The neural network is trained with actual laboratory data, which consists of six input variables. They are the standard penetration test value, the void ratio, the unit weight, the water content, the effective overburden pressure, and the mean effective confining pressure. The output layer consists of a single neuron, representing shear modulus or damping ratio. Results of the neural network training and testing show that predictions of shear modulus by the neural network approach is reliable although it is less successful in predicting damping ratio.


Sign in / Sign up

Export Citation Format

Share Document