Laboratory Measurements of the Dynamic Properties of Intact and Remolded Offshore Clays From Campeche Bay

Author(s):  
Celestino Valle ◽  
Kenneth H. Stokoe

Comparisons of the dynamic properties of intact and remolded offshore clay specimens has been carried out. The clay specimens were obtained from Campeche Bay, offshore Mexico. Combined resonant column and torsional shear (RCTS) equipment at the University of Texas at Austin was used to determine the dynamic soil properties. Each soil specimen was tested twice, first in the intact condition and second as remolded material. Remolding was done by kneading the intact material and then reforming the specimen by compacting in a mold. The effects on the dynamic properties, expressed by shear modulus and material damping ratio, between intact and remolded conditions are discussed. As expected, shear modulus and material damping at small and large strains are affected by remolding. Interestingly, the normalized modulus degradation curves were changed very little by remolding up to strains between 0.06 and 0.1%. The results offer insight into the effects of sampling disturbance on linear and nonlinear dynamic soil properties.

2019 ◽  
Vol 9 (9) ◽  
pp. 1897
Author(s):  
Song-Hun Chong

This paper proposes a theoretical framework for the characterization of the strain-dependent dynamic properties of soils. The analysis begins with an analytical constitutive model for soils under steady-state cyclic loading. The model describes the dominant soil characteristics, i.e., the hysteresis and nonlinearity with an intrinsic material property α, which physically represents the degree of the hysteresis nonlinearity in a medium. Explicit formulas for the backbone curve, tangent shear modulus, secant shear modulus, and damping ratio as a function of shear strain are derived directly from the constitutive model. A procedure is then developed to determine the parameter α in which the derived damping ratio equation is fitted to damping ratio data measured from the resonant column test (RCT). Clay and sand under three different levels of confinement stress are considered in the numerical evaluation. The capability of the proposed theoretical framework in predicting strain-dependent soil properties and responses is demonstrated.


2018 ◽  
Vol 9 (1) ◽  
pp. 78-98 ◽  
Author(s):  
Shiv Shankar Kumar ◽  
Arindam Dey ◽  
A. Murali Krishna

This article highlights the implication of site-specific properties on seismic ground response studies. One-dimensional equivalent linear ground response analysis was carried out using site-specific dynamic properties of locally available soils of Guwahati city, and the results are compared with those obtained using existing strain-dependent dynamic properties. Acceleration time histories from three strong motions were used. It was observed that an input motion having a higher peak bedrock acceleration, utilizing experimentally obtained dynamic soil properties, exhibits 38% and 24% lower peak ground acceleration and peak spectral acceleration, respectively, in comparison to the results obtained using standard VD-SI soil models. The amplification characteristics of the strong motions are observed to be significantly influenced by the degradation of damping ratio beyond 1% shear strain. The results highlight the necessity of conducting GRA of any region considering its regional dynamic soil properties to obtain more realistic outcomes.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2743
Author(s):  
Seongnoh Ahn ◽  
Jae-Eun Ryou ◽  
Kwangkuk Ahn ◽  
Changho Lee ◽  
Jun-Dae Lee ◽  
...  

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.


2011 ◽  
Vol 243-249 ◽  
pp. 2050-2054 ◽  
Author(s):  
Pei Hsun Tsai ◽  
Sheng Huoo Ni

In this paper the dynamic property (shear modulus and damping ratio) of cement-stabilized soil is studied with using the resonant column test. The amount of cement admixed, the magnitude of confining pressure, and shearing strain amplitude are the parameters considered. Test results show that the maximum shear modulus of cement-stabilized soil increases with increasing confining pressure, the minimum damping ratio decreases with increasing confining pressure. The shear modulus of cement-stabilized soil decreases with increasing shearing strain while the damping ratio increases with increasing shearing strain. In the paper the relationship of shear modulus versus shearing strain is fitted into the Ramberg-Osgood equations using regression analysis.


2020 ◽  
Vol 12 (4) ◽  
pp. 1616 ◽  
Author(s):  
Xianwen Huang ◽  
Aizhao Zhou ◽  
Wei Wang ◽  
Pengming Jiang

In order to support the dynamic design of subgrade filling engineering, an experiment on the dynamic shear modulus (G) and damping ratio (D) of clay–gravel mixtures (CGMs) was carried out. Forty-two groups of resonant column tests were conducted to explore the effects of gravel content (0%, 10%, 20%, 30%, 40%, 50%, and 60%, which was the mass ratio of gravel to clay), gravel shape (round and angular gravels), and confining pressure (100, 200, and 300 kPa) on the dynamic shear modulus, and damping ratio of CGMs under the same compacting power. The test results showed that, with the increase of gravel content, the maximum dynamic shear modulus of CGMs increases, the referent shear strain increases linearly, and the minimum and maximum damping ratios decrease gradually. In CGMs with round gravels, the maximum dynamic shear modulus and the maximum damping ratio are greater, and the referent shear strain and the minimum damping ratio are smaller, compared to those with angular gravels. With the increase of confining pressure, the maximum dynamic shear modulus and the referent shear strain increase nonlinearly, while the minimum and maximum damping ratios decrease nonlinearly. The predicting equation for the dynamic shear modulus and the damping ratio of CGMs when considering confining pressure, gravel content, and shape was established. The results of this research may put forward a solid foundation for engineering design considering low-strain-level mechanical performance.


2019 ◽  
Vol 56 (1) ◽  
pp. 14-22 ◽  
Author(s):  
DongSoon Park ◽  
Tadahiro Kishida

It is essential to obtain shear modulus reduction and damping ratio curves to perform dynamic analyses of earth-cored embankment dams. Many studies have been performed for dynamic properties of clayey soils, but they have been limited for earth core materials of dams. This study conducted resonant column tests to obtain shear modulus reduction (G/Gmax) and damping ratio (D) curves for 31 specimens (17 undisturbed and 14 remolded specimens) from 13 earth-cored embankment dams. Empirical G/Gmax and D curves are proposed for dynamic properties of clayey earth core materials. Fitting curves are provided by using the functional forms of the Ramberg–Osgood and Darendeli models. The observation shows that the undisturbed earth cores yield relatively higher G/Gmax and lower D curves than the remolded cores. G/Gmax curves of compacted earth cores are relatively higher than those of Vucetic and Dobry curves for a similar level of plasticity index. Uncertainty and bias are calculated by performing residual analysis, which shows that there is no clear bias in predicting G/Gmax and the uncertainties between undisturbed earth core materials and natural deposits are at a similar level. A proposed empirical relationship of G/Gmax and D curves for earth core materials can be utilized for dynamic analyses of embankment dams for cases where there is insufficient in situ data.


2002 ◽  
Vol 39 (5) ◽  
pp. 1201-1208 ◽  
Author(s):  
Supot Teachavorasinskun ◽  
Pipat Thongchim ◽  
Panitan Lukkunaprasit

The shear modulus and damping ratio of undisturbed Bangkok clay samples were measured using a cyclic triaxial apparatus. Although abundant literature on this topic exists, selection of the most suitable empirical correlation for a seismic analysis cannot be done unless site specific data are obtained. The apparatus used in this research can measure the stress–strain relationships from strain levels of about 0.01%. The equivalent shear modulus measured at these strains was about 80% of the value obtained from the shear wave velocity measurements. The degradation curves of the equivalent shear modulus fell into the ranges reported in the literature, for clay having similar plasticity. The damping ratios varied from about 4–5% at small strains (0.01%) to about 25–30% at large strains (10%). The effects of load frequency and cyclic stress history on the shear modulus and damping ratio were also investigated. An increase in load frequency from 0.1 to 1.0 Hz had no influence on the shear modulus characteristic, but it did result in a slight decrease in the damping ratio. The effects of the small amplitude cyclic stress history on the subsequently measured shear modulus and damping ratio were almost negligible when the changes in void ratio were taken into account.Key words: soft clay, shear modulus, damping ratio, cyclic triaxial test, cyclic stress history.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dervis Volkan Okur ◽  
Seyfettin Umut Umu

Waste automobile tires are used as additives or replacements instead of traditional materials in civil engineering works. In geotechnical engineering, tires are shredded to certain sizes and mixed with soil, especially used as backfill material behind retaining walls or fill material for roadway embankments. Compared to soil, rubber has high damping capacity and low shear modulus. Therefore, it requires the determination of the dynamic characteristics of rubber/soil mixtures. In this paper, the cyclic behavior of recycled tire rubber and clean sand was studied, considering the effects of the amount and particle size of the rubber and confining stresses. A total of 40 stress-controlled tests were performed on an integrated resonant column and dynamic torsional shear system. The effects of the relative size and proportion of the rubber on the dynamic characteristics of the mixtures are discussed. The dynamic properties, such as the maximum shear modulus, strain-dependent shear modulus, and damping ratio, are examined. For practical purposes, simple empirical relationships were formulated to estimate the maximum shear modulus and the damping ratio. The change in the shear modulus and damping ratio with respect to shear strain with 5% of rubber within the mixture was found to be close to the behavior of clean sand.


2006 ◽  
Vol 43 (6) ◽  
pp. 601-617 ◽  
Author(s):  
Y -H Wang ◽  
W -K Siu

This paper reports the effects of structure on the mechanical responses of kaolinite with known and controlled fabric associations. The dynamic properties and strength were assessed by resonant column tests and undrained triaxial compression tests, respectively. The experimental results demonstrate that interparticle forces and associated fabric arrangements influence the volumetric change under isotropic compression. Soils with different structures have individual consolidation lines, and the merging trend is not readily seen under an isotropic confinement up to 250 kPa. The dynamic properties of kaolinite were found to be intimately related to the soil structure. Stronger interparticle forces or higher degrees of flocculated structure lead to a greater small-strain shear modulus, Gmax, and a lower associated damping ratio, Dmin. The soil structure has no apparent influence on the critical-state friction angle (ϕ′c = 27.5°), which suggests that the critical stress ratio does not depend on interparticle forces. The undrained shear strength of kaolinite is controlled by its initial packing density rather than by any interparticle attractive forces, and yet the influence of the structure on the effective stress path is obvious.Key words: interparticle forces, shear modulus, damping ratio, stress–strain behavior, undrained shear strength, critical state.


2014 ◽  
Vol 94 (2) ◽  
pp. 189-208 ◽  
Author(s):  
Catherine A. Fox ◽  
Charles Tarnocai ◽  
Gabriele Broll ◽  
Monika Joschko ◽  
David Kroetsch ◽  
...  

Fox, C. A., Tarnocai, C., Broll, G., Joschko, M., Kroetsch, D. and Kenney, E. 2014. Enhanced A Horizon Framework and Field Form for detailed field scale monitoring of dynamic soil properties. Can. J. Soil Sci. 94: 189–208. Taxonomic protocols for A horizon description are limited when detailed monitoring of soil change in dynamic soil properties is required for determining the effectiveness of best management practices, remediation efforts, and assessing subtle impacts on soil properties from environmental and anthropogenic stressors. The A Horizon Framework was designed by consolidating protocols from national and international description systems and expert opinion to optimize descriptive capability through use of additional enhanced lowercase designators. The Framework defines new protocols and syntax resulting in a unique soil fingerprint code. Five levels of enhanced lowercase A horizon designators are defined: Level 1, Soil processes and environmental context; Level 2, Soil structure-bulk density; Level 3, Organic carbon; Level 4, pH and electrical conductivity; and, Level 5, Soil and landscape context (i.e., soil texture, surface conditions, current land use, slope character). An electronic Field Form based on the new Framework syntax automatically records the soil fingerprint code in an enhanced (all Levels included) and a minimum detail mode focused on the key dynamic properties. The soil fingerprint codes become a powerful tool by which to identify trends of soil change and small alterations in the dynamic soil properties. Examples of soil fingerprint codes from selected Canada and Germany long-term experimental studies are presented.


Sign in / Sign up

Export Citation Format

Share Document