scholarly journals Chronic Rejection Triggers the Development of an Aggressive Intragraft Immune Response through Recapitulation of Lymphoid Organogenesis

2010 ◽  
Vol 185 (1) ◽  
pp. 717-728 ◽  
Author(s):  
Olivier Thaunat ◽  
Natacha Patey ◽  
Giuseppina Caligiuri ◽  
Chantal Gautreau ◽  
Maria Mamani-Matsuda ◽  
...  
2019 ◽  
Vol 20 (21) ◽  
pp. 5493 ◽  
Author(s):  
Meunier ◽  
Chea ◽  
Garrido ◽  
Perchet ◽  
Petit ◽  
...  

Innate lymphoid cells (ILC) are important players of early immune defenses in situations like lymphoid organogenesis or in case of immune response to inflammation, infection and cancer. Th1 and Th2 antagonism is crucial for the regulation of immune responses, however mechanisms are still unclear for ILC functions. ILC2 and NK cells were reported to be both involved in allergic airway diseases and were shown to be able to interplay in the regulation of the immune response. CXCR6 is a common chemokine receptor expressed by all ILC, and its deficiency affects ILC2 and ILC1/NK cell numbers and functions in lungs in both steady-state and inflammatory conditions. We determined that the absence of a specific ILC2 KLRG1+ST2– subset in CXCR6-deficient mice is probably dependent on CXCR6 for its recruitment to the lung under inflammation. We show that despite their decreased numbers, lung CXCR6-deficient ILC2 are even more activated cells producing large amount of type 2 cytokines that could drive eosinophilia. This is strongly associated to the decrease of the lung Th1 response in CXCR6-deficient mice.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 70
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Martha Villagran ◽  
Robert Zdanowski ◽  
Jacek Z. Kubiak ◽  
...  

The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.


2021 ◽  
Vol 40 (4) ◽  
pp. S305-S306
Author(s):  
T. Heigl ◽  
J. Kaes ◽  
C. Aelbrecht ◽  
G. Vande Velde ◽  
A. Vanstapel ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hřibová Petra ◽  
Honsová Eva ◽  
Brabcová Irena ◽  
Hrubá Petra ◽  
Viklický Ondřej

Both antibody mediated (AMR) and T-cell mediated (TCMR) rejections either acute or chronic represent the main reason for late graft dysfunction. In this study we aimed to evaluate differences in the intrarenal expression patterns of immune system related genes in acute and chronic rejections. Graft biopsies were performed and evaluated according to Banff classification. Using the TaqMan Low Density Array, the intrarenal expressions of 376 genes relating to immune response (B-cell activation, T-cell activation, chemokines, growth factors, immune regulators, and apoptosis) were analyzed in the four rejection categories: chronic AMR, chronic TCMR, acute AMR, and acute TCMR. The set of genes significantly upregulated in acute TCMR as compared to acute AMR was identified, while no difference in gene expressions between chronic rejections groups was found. In comparison with functioning grafts, grafts that failed within the next 24 months after the chronic rejection morphological confirmation presented at biopsy already established severe graft injury (low eGFR, higher proteinuria), longer followup, higher expression of CDC20, CXCL6, DIABLO, GABRP, KIAA0101, ME2, MMP7, NFATC4, and TGFB3 mRNA, and lower expression of CCL19 and TRADD mRNA. In conclusion, both Banff 2007 chronic rejection categories did not differ in intrarenal expression of 376 selected genes associated with immune response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingming Zhuang ◽  
Jiangang Hou

Kidney transplantation is a primary therapy for end-stage renal disease (ESRD) all the time. But it does not mean that we have fully unraveling the mystery of kidney transplantation and confer every patient favorable prognosis. Immune rejection has always been a stumbling block when we try to increase the success rate of kidney transplantation and improve long-term outcomes. Even if the immune rejection is effectively controlled in acute phase, there is a high possibility that the immune response mediated by chronically activated antibodies will trigger chronic rejection and ultimately lead to graft failure. At present, immunosuppressive agent prepared chemically is mainly used to prevent acute or chronic rejection, but it failed to increase the long-term survival rate of allografts or reduce the incidence of chronic rejection after acute rejection, and is accompanied by many adverse reactions. Therefore, many studies have begun to use immune cells to regulate the immune response in order to control allograft rejection. This article will focus on the latest study and prospects of more popular regulatory myeloid cells in the direction of renal transplantation immunotherapy and introduce their respective progress from experimental research to clinical research.


2019 ◽  
Vol 4 (41) ◽  
pp. eaau6298 ◽  
Author(s):  
Megan Sykes ◽  
David H. Sachs

The success of organ transplantation is limited by the complications of immunosuppression, by chronic rejection, and by the insufficient organ supply, and thousands of patients die every year while waiting for a transplant. With recent progress in xenotransplantation permitting porcine organ graft survival of months or even years in nonhuman primates, there is renewed interest in its potential to alleviate the organ shortage. Many of these advances are the result of our heightened capacity to modify pigs genetically, particularly with the development of CRISPR-Cas9–based gene editing methodologies. Although this approach allows the engineering of pig organs that are less prone to rejection, the clinical application of xenotransplantation will require the ability to avoid the ravages of a multifaceted attack on the immune system while preserving the capacity to protect both the recipient and the graft from infectious microorganisms. In this review, we will discuss the potential and limitations of these modifications and how the engineering of the graft can be leveraged to alter the host immune response so that all types of immune attack are avoided.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3452
Author(s):  
Enrico Maggi ◽  
Irene Veneziani ◽  
Lorenzo Moretta ◽  
Lorenzo Cosmi ◽  
Francesco Annunziato

Group 2 Innate Lymphoid Cells (ILC2s) belong to the family of helper ILCs which provide host defense against infectious agents, participate in inflammatory responses and mediate lymphoid organogenesis and tissue repair, mainly at the skin and mucosal level. Based on their transcriptional, phenotypic and functional profile, ILC2s mirror the features of the adaptive CD4+ Th2 cell subset, both contributing to the so-called type 2 immune response. Similar to other ILCs, ILC2s are rapidly activated by signals deriving from tissue and/or other tissue-resident immune cells. The biologic activity of ILCs needs to be tightly regulated in order to prevent them from contributing to severe inflammation and damage in several organs. Indeed, ILC2s display both enhancing and regulatory roles in several pathophysiological conditions, including tumors. In this review, we summarize the actual knowledge about ILC2s ability to induce or impair a protective immune response, their pro- or antitumor activity in murine models, human (children and adults) pathologies and the potential strategies to improve cancer immunotherapy by exploiting the features of ILC2s.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Marcos V. Silva ◽  
Juliana R. Machado ◽  
Laura P. Rocha ◽  
Lúcio R. Castellano ◽  
Marlene A. Reis ◽  
...  

Kidneys are one of the most frequently transplanted human organs. Immunosuppressive agents may prevent or reverse most acute rejection episodes; however, the graft may still succumb to chronic rejection. The immunological response involved in the chronic rejection process depends on both innate and adaptive immune response. T lymphocytes have a pivotal role in chronic rejection in adaptive immune response. Meanwhile, we aim to present a general overview on the state-of-the-art knowledge of the strategies used for manipulating the lymphocyte activation mechanisms involved in allografts, with emphasis on T-lymphocyte costimulatory and coinhibitory molecules of the B7-CD28 superfamily. A deeper understanding of the structure and function of these molecules improves both the knowledge of the immune system itself and their potential action as rejection inducers or tolerance promoters. In this context, the central role played by CD28 family, especially the relationship between CD28 and CTLA-4, becomes an interesting target for the development of immune-based therapies aiming to increase the survival rate of allografts and to decrease autoimmune phenomena. Good results obtained by the recent development of abatacept and belatacept with potential clinical use aroused better expectations concerning the outcome of transplanted patients.


Sign in / Sign up

Export Citation Format

Share Document