scholarly journals Transgenic Expression of Stromal Cell-Derived Factor-1/CXC Chemokine Ligand 12 Enhances Myeloid Progenitor Cell Survival/Antiapoptosis In Vitro in Response to Growth Factor Withdrawal and Enhances Myelopoiesis In Vivo

2003 ◽  
Vol 170 (1) ◽  
pp. 421-429 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Scott Cooper ◽  
Lisa Kohli ◽  
Giao Hangoc ◽  
Younghee Lee ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1347-1347
Author(s):  
Hal E. Broxmeyer ◽  
Nico Ghilardi ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Wen Tao ◽  
...  

Abstract Interleukin (IL)-31 receptor (R), also called gp130-like monocyte-receptor (GLM-R; Ghilardi et al. J. Biol. Chem.277:16831, 2002) is related to gp130 (~25% homology), and G-CSF-R (~24%). Its signaling activates STAT3 and STAT5. IL-31 is a four helix bundle cytokine preferentially produced by T helper 2 cells. Nothing is known of the possible hematopoietic effects of IL-31R and IL-31. However, since: IL-31 signals through a receptor composed of IL-31RA and Oncostatin M R (Dillon et al. Nature Immunol. 5:752,2004), Oncostatin M is implicated in homeostasis of myeloid progenitor cells (Broxmeyer et al. Immunity.16:815, 2002), and STAT3 and 5 are implicated by a number of groups in cytokine regulation of hematopoiesis, we hypothesized that the IL-31/IL-31R axis would be involved in regulation of hematopoiesis. We first compared myeloid progenitor cell (MPC: CFU-GM, BFU-E, and CFU-GEMM) numbers and cycling status in marrow and spleen of IL-31R −/− vs. littermate control mice (+/+) using a combination of Epo, SCF and PWMSCM to stimulate in vitro the cells taken from these mice. IL-31R −/− mice had significantly decreased numbers of MPC per femur (~51%) and spleen (~36–45%) with significantly decreased MPC cycling status in marrow (% MPC in S-phase: 0–3% in IL-31R −/− vs. 41–53% in +/+ mice). MPC in spleen of IL-31 −/− and +/+ were both in a slow or non cycling state (0–3% in S-phase). In contrast to CFU-GM from +/+ mice, CFU-GM from IL-31R −/− mice demonstrated little or no synergistic response to combined stimulation in vitro with GM-CSF or IL-3 with either SCF or Flt3-ligand (FL). This translated to decreased absolute numbers per femur of GM-CSF+SCF-, GM-CSF+FL-, IL-3+SCF-, and IL-3+FL- responsive CFU-GM in IL-31R −/− mice. However, there were no significant differences between GM-CSF- or IL-3- responsive CFU-GM per femur between IL-31R −/− vs. +/+ mice suggesting effects on immature subsets of MPC. Recombinant IL-31 was assessed for effects in vitro. IL-31, at concentrations up to 100ng/ml, did not stimulate colony formation by marrow MPC, nor did it enhance or suppress colony formation stimulated by GM-CSF, Epo, Epo+SCF, or Epo+SCF+GM-CSF. However, IL-31 did enhance survival of MPC subjected to delayed growth factor addition in a manner similar to, but not as potent as, that of SDF-1/CXCL12. IL-31 manifested no chemotaxis activity for +/+ MPC, and IL-31R −/− and +/+ MPC were equally responsive to the chemotactic effects of SDF-1/CXCL12. These results suggest that the IL-31R in vivo acts to positively regulate numbers and cycling of immature subsets of MPC in the marrow, and that IL-31 has survival enhancing effects on MPC in vitro.


2010 ◽  
Vol 19 (4) ◽  
pp. 399-408 ◽  
Author(s):  
Sina Y. Rabbany ◽  
Joseph Pastore ◽  
Masaya Yamamoto ◽  
Tim Miller ◽  
Shahin Rafii ◽  
...  

Proper wound diagnosis and management is an increasingly important clinical challenge and is a large and growing unmet need. Pressure ulcers, hard-to-heal wounds, and problematic surgical incisions are emerging at increasing frequencies. At present, the wound-healing industry is experiencing a paradigm shift towards innovative treatments that exploit nanotechnology, biomaterials, and biologics. Our study utilized an alginate hydrogel patch to deliver stromal cell-derived factor-1 (SDF-1), a naturally occurring chemokine that is rapidly overexpressed in response to tissue injury, to assess the potential effects SDF-1 therapy on wound closure rates and scar formation. Alginate patches were loaded with either purified recombinant human SDF-1 protein or plasmid expressing SDF-1 and the kinetics of SDF-1 release were measured both in vitro and in vivo in mice. Our studies demonstrate that although SDF-1 plasmid- and protein-loaded patches were able to release therapeutic product over hours to days, SDF-1 protein was released faster (in vivo Kd 0.55 days) than SDF-1 plasmid (in vivo Kd 3.67 days). We hypothesized that chronic SDF-1 delivery would be more effective in accelerating the rate of dermal wound closure in Yorkshire pigs with acute surgical wounds, a model that closely mimics human wound healing. Wounds treated with SDF-1 protein ( n = 10) and plasmid ( n = 6) loaded patches healed faster than sham ( n = 4) or control ( n = 4). At day 9, SDF-1-treated wounds significantly accelerated wound closure (55.0 ± 14.3% healed) compared to nontreated controls (8.2 ± 6.0%, p < 0.05). Furthermore, 38% of SDF-1-treated wounds were fully healed at day 9 (vs. none in controls) with very little evidence of scarring. These data suggest that patch-mediated SDF-1 delivery may ultimately provide a novel therapy for accelerating healing and reducing scarring in clinical wounds.


2017 ◽  
Vol 31 (7) ◽  
pp. 1049-1061 ◽  
Author(s):  
Tadahiro Takayama ◽  
Jisen Dai ◽  
Keita Tachi ◽  
Ryutaro Shohara ◽  
Hironori Kasai ◽  
...  

Stromal cell-derived factor-1 (SDF-1) is a cytokine that is important in stem and progenitor cell recruitment in tissue repair after injury. Regenerative procedures using collagen membranes (CMs) are presently well established in periodontal and implant dentistry. The objective of this study is to test the subsequent effects of the released SDF-1 from a CM on bone regeneration compared to platelet-derived growth factor (PDGF) in vitro and in vivo. For in vitro studies, cell proliferation, alkaline phosphatase activity, and osteoblastic differentiation marker genes were assessed after MC3T3-E1 mouse preosteoblasts were cultured with CMs containing factors. In vivo effects were investigated by placement of CMs containing SDF-1 or PDGF using a rat mandibular bone defect model. At 4 weeks after the surgery, the new bone formation was measured using micro-computed tomography (µCT) and histological analysis. The results of in vitro studies revealed that CM delivery of SDF-1 significantly induced cell proliferation, ALP activity, and gene expression of all osteogenic markers compared to the CM alone or control, similar to PDGF. Quantitative and qualitative µCT analysis for volume of new bone formation and the percentage of new bone area showed that SDF-1-treated groups significantly increased and accelerated bone regeneration compared to control and CM alone. The enhancement of bone formation in SDF-1-treated animals was dose-dependent and with levels similar to those measured with PDGF. These results suggest that a CM with SDF-1 may be a great candidate for growth factor delivery that could be a substitute for PDGF in clinical procedures where bone regeneration is necessary.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Shih-Ya Tseng ◽  
Ting-Hsing Chao ◽  
Yi-Heng Li ◽  
Chung-Lung Cho

This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs)in vitroand the therapeutic implication of hybrid therapy with cilostazol and human early EPCsin vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration andin vitrovascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1αinhibition. Plasma SDF-1αlevels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazolex vivowere superior to untreated EPCs usingin vivoMatrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effectin vivo. Cotreatment may be beneficial in ischemic disease.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1771-1779 ◽  
Author(s):  
JI Jonsson ◽  
Q Wu ◽  
K Nilsson ◽  
RA Phillips

Abstract Studies of gene regulation during early hematopoiesis and of the regulatory network that controls differentiation and lineage commitment are hampered by difficulties in isolating and growing stem cells and early progenitor cells. These difficulties preclude the application of standard molecular genetic approaches to these problems. As an alternative approach we have introduced a lacZ-containing promoter-trap retrovirus into hematopoietic cells. We used the interleukin-3- dependent mouse myeloid progenitor cell 32D as a model to identify transcriptionally active genes. The frequency of integrations that led to transcription of the lacZ gene was estimated to be 0.5% of all integrations, of which 14% were downregulated on differentiation of 32D cells towards neutrophils. Thus, one in every 1,000 to 2,000 integrations identified a developmentally regulated gene. Cellular DNA sequences upstream of proviral integrations were isolated by inverse polymerase chain reaction. Five were further characterized and we confirmed by RNA expression analysis that they were downregulated on differentiation. Sequence analysis revealed identification of novel genes with sequence similarity to known genes. Considering the high efficiency of retroviral infection, our study shows the feasibility of using promoter-trap vectors to identity and isolate developmentally regulated genes from early hematopoietic progenitors.


2008 ◽  
Vol 294 (6) ◽  
pp. H2524-H2534 ◽  
Author(s):  
Steven M. Kerfoot ◽  
Graciela Andonegui ◽  
Claudine S. Bonder ◽  
Lixin Liu

Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1α, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1α on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFα and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1α (10 μg, 4–5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1α (1 μg, 4–5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFα. SDF-1α-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1α enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.


Sign in / Sign up

Export Citation Format

Share Document