scholarly journals Phenyl Methimazole Inhibits TNF-α-Induced VCAM-1 Expression in an IFN Regulatory Factor-1-Dependent Manner and Reduces Monocytic Cell Adhesion to Endothelial Cells

2004 ◽  
Vol 173 (3) ◽  
pp. 2041-2049 ◽  
Author(s):  
Nilesh M. Dagia ◽  
Norikazu Harii ◽  
Antonella E. Meli ◽  
Xiaolu Sun ◽  
Christopher J. Lewis ◽  
...  
2007 ◽  
Vol 55 (7) ◽  
pp. 721-733 ◽  
Author(s):  
Yoshihiko Sawa ◽  
Yukitaka Sugimoto ◽  
Takeshi Ueki ◽  
Hiroyuki Ishikawa ◽  
Atuko Sato ◽  
...  

TNF-α alters leukocyte adhesion molecule expression of cultured endothelial cells like human umbilical vein endothelial cells (HUVEC). This study was designed to investigate the changes in vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and platelet endothelial cell adhesion molecule-1 (PECAM-1) expression with TNF-α stimulation in cultured human neonatal dermal lymphatic endothelial cells (HNDLEC). The real-time quantitative PCR analysis on HNDLEC showed that TNF-α treatment leads to increases of VCAM-1 and ICAM-1 mRNAs to the 10.8- and 48.2-fold levels of untreated cells and leads to a reduction of PECAM-1 mRNA to the 0.42-fold level of untreated cells. Western blot and immunohistochemical analysis showed that TNF-α leads to VCAM-1 and ICAM-1 expressions that were inhibited by antiserum to human TNF receptor or by AP-1 inhibitor nobiletin. In flow cytometry analysis, the number of VCAM-1- and ICAM-1-positive cells increased, and PECAM-1-positive cells decreased with TNF-α treatment. Regarding protein amounts produced in cells and amounts expressed on the cell surface, VCAM-1 and ICAM-1 increased in HNDLEC and HUVEC, and PECAM-1 decreased in HNDLEC in a TNF-α concentration-dependent manner. VCAM-1, ICAM-1, and PECAM-1 protein amounts in TNF-α-stimulated cells were lower in HNDLEC than in HUVEC. This suggests that the lymphatic endothelium has the TNF-α-induced signaling pathway, resulting in increased VCAM-1 and ICAM-1 expression to a weaker extent than blood endothelium and PECAM-1 reduction to a stronger extent than blood endothelium.


Author(s):  
Klaokwan SRISOOK ◽  
Suthasinee JINDA ◽  
Ekaruth SRISOOK

Pluchea indica is a shrub plant found in mangrove forests. The leaves are consumed as food and herbal tea and exhibit various biological effects, such as antioxidant and anti-inflammatory activities, in macrophages and animal models. However, the inhibitory activity of P. indica leaf extract on vascular inflammation remains unknown. Therefore, this study investigated the effect of an ethanol extract from P. indica herbal tea leaves (PIE) on tumor necrosis factor-α (TNF-α)-induced human vascular endothelial EA.hy926 cells. The cytotoxic effect of PIE was determined by thiazolyl blue tetrazolium bromide assays. PIE at concentrations of 12.5 - 50 µg/mL did not show significant cytotoxicity, whereas PIE at concentrations ≥ 100 µg/mL decreased cell viability. PIE inhibited the production of reactive oxygen species (ROS) in TNF-α-stimulated endothelial cells. To evaluate the PIE’s anti-vascular inflammatory activity, the protein expression of cell adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), was determined by western blot. PIE significantly decreased TNF-α-induced ICAM-1 and VCAM-1 expression in a concentration-dependent manner. Furthermore, PIE upregulated heme oxygenase-1 (HO-1) in a concentration- and time-dependent manner. Inhibiting the activity of HO-1 by tin protoporphyrin IX significantly blocked the suppressive effect of PIE on ICAM-1 but not VCAM-1 expression. Therefore, PIE exerts anti-inflammatory activity on vascular endothelial cells, at least in part, by suppressing ROS production and the induction of HO-1. The obtained data suggest that PIE is a promising substance for developing therapeutic agents or as an ingredient of functional food. HIGHLIGHTS Pluchea indica leaf extract (PIE) at non-toxic doses inhibited ICAM-1 and VCAM-1 in TNF-α-induced human vascular endothelial cells PIE suppressed the production of ROS in TNF-α-stimulated endothelial cells PIE exerts anti-inflammatory activity on vascular endothelial cells mediated partly through the upregulation of HO-1


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2795
Author(s):  
Yun Jung Lee ◽  
Yong Pyo Lee ◽  
Chang Seob Seo ◽  
Eun Sik Choi ◽  
Byung Hyuk Han ◽  
...  

Carthamus tinctorius L., known as safflower, has been used in traditional treatment for cardiovascular, cerebrovascular, and diabetic vascular complications. We proposed to investigate how the ethanol extract of Carthamus tinctorius L. (ECT) can be used ethnopharmacologically and alleviate vascular inflammatory processes under cytokine stimulation in human vascular endothelial cells. Using the optimized HPLC method, six markers were simultaneously analyzed for quality control of ECT. Pretreatment with ECT (10–100 μg/mL) significantly reduced the increase of leukocyte adhesion to HUVEC by TNF-α in a dose-dependent manner. Cell adhesion molecules (CAMs) such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial cell selectin (E-selectin) are decreased by ECT. In addition, ECT significantly suppressed TNF-α-induced oxidative stress referring to reactive oxygen species (ROS) production. p65 NF-κB nuclear translocation and its activation were inhibited by ECT. Furthermore, pretreatment of ECT increased the HO-1 expression, and nuclear translocation of Nrf-2. These data suggest the potential role of ECT as a beneficial therapeutic herb in vascular inflammation via ROS/NF-kB pathway and the regulation of Nrf-2/HO-1 signaling axis is involved in its vascular protection. Thus, further study will be needed to clarify which compound is dominant for protection of vascular diseases.


2001 ◽  
Vol 281 (4) ◽  
pp. C1096-C1105 ◽  
Author(s):  
Tadayuki Oshima ◽  
Kevin P. Pavlick ◽  
F. Stephen Laroux ◽  
S. Kris Verma ◽  
Paul Jordan ◽  
...  

Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is a 60-kDa endothelial cell adhesion glycoprotein that regulates lymphocyte trafficking to Peyer's patches and lymph nodes. Although it is widely agreed that MAdCAM-1 induction is involved in chronic gut inflammation, few studies have investigated regulation of MAdCAM-1 expression. We used two endothelial lines [bEND.3 (brain) and SVEC (high endothelium)] to study the signal paths that regulate MAdCAM-1 expression in response to tumor necrosis factor (TNF)-α using RT-PCR, blotting, adhesion, and immunofluorescence. TNF-α induced both MAdCAM-1 mRNA and protein in a dose- and time-dependent manner. This induction was tyrosine kinase (TK), p42/44, p38 mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB/poly-ADP ribose polymerase (PARP) dependent. Because MAdCAM-1 is regulated via MAPKs, we examined mitogen/extracellular signal-regulated kinase (MEK)-1/2 activation in SVEC. We found that MEK-1/2 is activated by TNF-α within minutes and is dependent on TK and p42/44 MAPKs. Similarly, TNF-α activated NF-κB through TK, p42/44, p38 MAPKs, and PARP pathways in SVEC cells. MAdCAM-1 was also shown to be frequently distributed to endothelial junctions both in vitro and in vivo. Cytokines like TNF-α stimulate MAdCAM-1 in high endothelium via TK, p38, p42/22 MAPKs, and NF-κB/PARP. MAdCAM-1 expression requires NF-κB translocation through both direct p42/44 and indirect p38 MAPK pathways in high endothelial cells.


2019 ◽  
Vol 20 (21) ◽  
pp. 5383 ◽  
Author(s):  
Li Zhang ◽  
Feifei Wang ◽  
Qing Zhang ◽  
Qiuming Liang ◽  
Shumei Wang ◽  
...  

Inflammation is a key mediator in the progression of atherosclerosis (AS). Benzoinum, a resin secreted from the bark of Styrax tonkinensis, has been widely used as a form of traditional Chinese medicine in clinical settings to enhance cardiovascular function, but the active components of the resin responsible for those pharmaceutical effects remain unclear. To better clarify these components, a new phenylpropane derivative termed stybenpropol A was isolated from benzoinum and characterized via comprehensive spectra a nalysis. We further assessed how this phenylpropane derivative affected treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-α (TNF-α). Our results revealed that stybenpropol A reduced soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-8 (IL-8), and interleukin-1β (IL-1β) expression by ELISA, inhibited apoptosis, and accelerated nitric oxide (NO) release in TNF-α-treated HUVECs. We further found that stybenpropol A decreased VCAM-1, ICAM-1, Bax, and caspase-9 protein levels, and increased the protein levels of Bcl-2, IKK-β, and IκB-α. This study identified a new, natural phenylpropane derivative of benzoinum, and is the first to reveal its cytoprotective effects in the context of TNF-α-treated HUVECs via regulation of the NF-κB and caspase-9 signaling pathways.


2019 ◽  
Vol 25 (7) ◽  
pp. 433-443
Author(s):  
Lin-Lin Feng ◽  
Wei-Na Xin ◽  
Xiu-Li Tian

To investigate the role of miR-146 and its possible relationship with MALAT1 in LPS-induced inflammation in human microvascular endothelial cells (HMECs), HMEC-1 cells were treated with LPS to construct an inflammatory injury cell model, and the cell viability, TNF-α and IL-6 secretion and the expression levels of VCAM-1, SELE and ICAM-1 were analysed as markers of inflammatory injury. The regulation mechanisms of miR-146 interacted with MALAT1 and the downstream NF-κB signalling were also verified by dual-luciferase assay and knockdown technology. LPS significantly decreased the cell viability, increased levels of VCAM-1, SELE and ICAM-1 and also up-regulated miR-146a/b, TNF-α and IL-6 in a dose-dependent manner. Over-expression of miR-146a resulted in down-regulation of TNF-α and IL-6, as well as VCAM-1, SELE and ICAM-1, while inhibition of miR-146a led to opposite results. The dual-luciferase reporter assay showed both miR-146a and miR-146b directly targeted and negatively regulated the expression of MALAT1. Silencing of MALAT1 suppressed LPS-induced NF-κB activation and TNF-α and IL-6 secretion, reducing the cell inflammatory injury, but these changes were reversed after combined treatment with miR-146a inhibitor. Taken together, we demonstrate that miR-146 protects HMECs against inflammatory injury by inhibiting NF-κB activation. This process is modulated by MALAT1.


2020 ◽  
Vol 57 (6) ◽  
pp. 313-324
Author(s):  
Li-Hua Cao ◽  
Ho Sub Lee ◽  
Zhe-Shan Quan ◽  
Yun Jung Lee ◽  
Yu Jin

<b><i>Objective:</i></b> Xanthotoxin (XAT) is a linear furanocoumarin mainly extracted from the plants <i>Ammi majus</i> L. XAT has been reported the apoptosis of tumor cells, anti-convulsant, neuroprotective effect, antioxidative activity, and vasorelaxant effects. This study aimed to investigate the vascular protective effects and underlying molecular mechanisms of XAT. <b><i>Methods:</i></b> XAT’s activity was studied in rat thoracic aortas, isolated with aortic rings, and human umbilical vein endothelial cells (HUVECs). <b><i>Results:</i></b> XAT induced endothelium-dependent vasodilation in a concentration-dependent manner in the isolated rat thoracic aortas. Removal of endothelium or pretreatment of aortic rings with L-NAME, 1<i>H</i>-[1,2,4]-oxadiazolo-[4,3-<i>a</i>]-quinoxalin-1-one, and wortmannin significantly inhibited XAT-induced relaxation. In addition, treatment with thapsigargin, 2-aminoethyl diphenylborinate, Gd<sup>3+</sup>, and 4-aminopyridine markedly attenuated the XAT-induced vasorelaxation. XAT increased nitric oxide production and Akt- endothelial NOS (eNOS) phosphorylation in HUVECs. Moreover, XAT attenuated the expression of TNF-α-induced cell adhesion molecules such as intercellular adhesion molecule, vascular cell adhesion molecule-1, and E-selectin. However, this effect was attenuated by the eNOS inhibitors L-NAME and asymmetric dimethylarginine. <b><i>Conclusions:</i></b> This study suggests that XAT induces vasorelaxation through the Akt-eNOS-cGMP pathway by activating the K<sub>V</sub> channel and inhibiting the L-type Ca<sup>2+</sup> channel. Furthermore, XAT exerts an inhibitory effect on vascular inflammation, which is correlated with the observed vascular protective effects.


Sign in / Sign up

Export Citation Format

Share Document