scholarly journals Spatial and Temporal Profiles for Anti-Inflammatory Gene Expression in Leukocytes during a Resolving Model of Peritonitis

2006 ◽  
Vol 176 (7) ◽  
pp. 4410-4418 ◽  
Author(s):  
Amilcar S. Damazo ◽  
Simon Yona ◽  
Roderick J. Flower ◽  
Mauro Perretti ◽  
Sonia M. Oliani
2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S5-S6
Author(s):  
Ryan Frieler ◽  
Thomas Vigil ◽  
Richard Mortensen ◽  
Yatrik Shah

Abstract Background Inflammation is a hallmark of inflammatory bowel disease and alterations in tricarboxylic acid cycle (TCA) metabolism have been identified as major regulators of immune cell phenotype during inflammation and hypoxia. The TCA cycle metabolite, itaconate, is produced by the enzyme aconitate decarboxylase 1 (Acod1) and is highly upregulated during classical macrophage activation and during experimental colitis. Itaconate and cell permeable derivatives have robust anti-inflammatory effects on macrophages, therefore we hypothesized that Acod1-produced itaconate has a protective, anti-inflammatory effect during experimental colitis. Methods and Results Wild type (WT) control and Acod1-/- mice were administered 3% Dextran Sulfate Sodium (DSS) in water for 7 days to induce experimental colitis. After DSS was discontinued, Acod1-/- mice had significantly reduced body weight recovery with increased macroscopic disease severity, and upon dissection had decreased colon length and more severe inflammation. To determine if myeloid cells are the critical Acod1/itaconate-producing cell types, we generated myeloid-specific Acod1 deficient mice, however no differences in weight loss, colon length or inflammatory gene expression were detected compared to WT controls. To test whether supplementation with exogenous itaconate could ameliorate colitis, WT mice were treated with the cell-permeable form of itaconate, dimethyl itaconate (DMI). Administration of DMI significantly improved recovery after 7 days of DSS treatment and significantly reduced inflammatory gene expression in the colon. Conclusion Our data suggest that Acod1-produced itaconate has an important role in the regulation of inflammation during experimental colitis. Although myeloid cells have been thought to be major producers of Acod1 and itaconate, our data indicate that other cell types are involved. These results highlight the importance of this immunometabolic pathway and suggest that preservation or enhancement of this pathway with natural metabolites or metabolite derivatives could have beneficial effects during colitis.


MedChemComm ◽  
2016 ◽  
Vol 7 (11) ◽  
pp. 2184-2190 ◽  
Author(s):  
Maria E. Ourailidou ◽  
Niek G. J. Leus ◽  
Kim Krist ◽  
Alessia Lenoci ◽  
Antonello Mai ◽  
...  

Azobenzene ortho-aminoanilides inhibit HDACs 1–3 and possess anti-inflammatory properties in murine macrophages.


Author(s):  
Panagiotis Fotakis ◽  
Vishal Kothari ◽  
David G. Thomas ◽  
Marit Westerterp ◽  
Matthew M. Molusky ◽  
...  

Objective: HDL (high-density lipoprotein) infusion reduces atherosclerosis in animal models and is being evaluated as a treatment in humans. Studies have shown either anti- or proinflammatory effects of HDL in macrophages, and there is no consensus on the underlying mechanisms. Here, we interrogate the effects of HDL on inflammatory gene expression in macrophages. Approach and Results: We cultured bone marrow–derived macrophages, treated them with reconstituted HDL or HDL isolated from APOA1 Tg ;Ldlr −/− mice, and challenged them with lipopolysaccharide. Transcriptional profiling showed that HDL exerts a broad anti-inflammatory effect on lipopolysaccharide-induced genes and proinflammatory effect in a subset of genes enriched for chemokines. Cholesterol removal by POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) liposomes or β-methylcyclodextrin mimicked both pro- and anti-inflammatory effects of HDL, whereas cholesterol loading by POPC/cholesterol-liposomes or acetylated LDL (low-density lipoprotein) before HDL attenuated these effects, indicating that these responses are mediated by cholesterol efflux. While early anti-inflammatory effects reflect reduced TLR (Toll-like receptor) 4 levels, late anti-inflammatory effects are due to reduced IFN (interferon) receptor signaling. Proinflammatory effects occur late and represent a modified endoplasmic reticulum stress response, mediated by IRE1a (inositol-requiring enzyme 1a)/ASK1 (apoptosis signal-regulating kinase 1)/p38 MAPK (p38 mitogen-activated protein kinase) signaling, that occurs under conditions of extreme cholesterol depletion. To investigate the effects of HDL on inflammatory gene expression in myeloid cells in atherosclerotic lesions, we injected reconstituted HDL into Apoe −/− or Ldlr −/− mice fed a Western-type diet. Reconstituted HDL infusions produced anti-inflammatory effects in lesion macrophages without any evidence of proinflammatory effects. Conclusions: Reconstituted HDL infusions in hypercholesterolemic atherosclerotic mice produced anti-inflammatory effects in lesion macrophages suggesting a beneficial therapeutic effect of HDL in vivo.


2014 ◽  
Vol 40 ◽  
pp. e36
Author(s):  
C. McInnis ◽  
M. Thoma ◽  
D. Gianferante ◽  
L. Hanlin ◽  
X. Chen ◽  
...  

2018 ◽  
Vol 91 ◽  
pp. 62-67 ◽  
Author(s):  
Allison K. Farrell ◽  
Richard B. Slatcher ◽  
Erin T. Tobin ◽  
Ledina Imami ◽  
Derek E. Wildman ◽  
...  

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Marie-ève Labonté ◽  
Patrick Couture ◽  
André J Tremblay ◽  
Jean-Charles Hogue ◽  
Valéry Lemelin ◽  
...  

Recent evidence suggests that diet-induced inflammation in the small intestine is linked to obesity and insulin resistance. Long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to have anti-inflammatory effects by down-regulating inflammatory gene expression in adipocytes and mononuclear cells. However, the extent to which EPA and DHA may exert their anti-inflammatory effects by down-regulating inflammation in the gut is unknown. The objective of the study was to investigate the impact of EPA+DHA supplementation on the expression of inflammatory genes in the small intestine of patients with type 2 diabetes. A total of 12 men with type 2 diabetes were recruited in this placebo-controlled randomized crossover study. After a 4-week run-in period, patients received in random sequence 5 g/d of fish oil providing 3 g of EPA+DHA or placebo (corn and soybean oil) for 8 weeks, each separated by a 12-week washout period. Gene expression was assessed by real-time PCR in duodenal biopsy samples obtained in the fasted state at the end of each treatment phase. Intestinal mRNA expression levels for interleukin(IL)-6 and tumor-necrosis factor(TNF)-α were hardly detectable after either treatment (< 100 copies/10^5 copies of the reference gene ATP synthase O subunit, ATP5o). Intestinal mRNA expression of IL-18 and of the transcription factor STAT3 (signal transducer and activator of transcription 3) was higher (> 5000 copies/10^5 copies ATP5o) but still relatively low and EPA+DHA supplementation had no impact on any of these levels (P ≥ 0.73 between treatments). Plasma C-reactive protein (CRP) concentrations after supplementation with EPA+DHA (5.2 ± 4.5 mg/L) were not significantly different than values measured after placebo (8.0 ± 10.8 mg/L, P = 0.2). In conclusion, these data suggest that gene expression of pro-inflammatory cytokines and STAT3 in duodenal cells is low in patients with type 2 diabetes and not affected by EPA+DHA supplementation.


Sign in / Sign up

Export Citation Format

Share Document