Validation of Higher-Order Interactional Aerodynamics Simulations on Full Helicopter Configurations

2019 ◽  
Vol 64 (4) ◽  
pp. 1-13
Author(s):  
Jannik Petermann ◽  
Yong Su Jung ◽  
James Baeder ◽  
Jürgen Rauleder

Time-accurate numerical predictions of the interactional aerodynamics between NASA's generic ROBIN fuselage and its four-bladed rotor were performed using the recently developed Reynolds-averaged Navier–Stokes solver HAMSTR. Two stencil-based reconstruction schemes (MUSCL, WENO), a second-order temporal accuracy, and the Spalart–Allmaras turbulence model were used. Three-dimensional volume meshes were created in a robust manner from two-dimensional unstructured surface grids using Hamiltonian paths and strands on nearbody domains. Grid connectivity was established between nearbody and background domains in an overset fashion. Two previously researched operational conditions were reproduced, i. e., a near-hover case and a medium-speed forward flight case at an advance ratio of 0.151. The results were compared with various experimental and numerical references and were found to be in good agreement with both. The comparison included the analysis of the rotor wake structure, tip-vortex trajectories, steady and dynamic fuselage pressure distributions in longitudinal and lateral directions, and rotor inflow predictions.

Author(s):  
N. N. So̸rensen ◽  
J. A. Michelsen ◽  
S. Schreck

The application of an incompressible Reynolds Averaged Navier-Stokes solver to cases from the NREL/NASA Ames wind tunnel test is described. Six cases of the NREL PHASE-VI rotor in the upwind configuration under zero yaw and zero degrees tip pitch are computed. Favorable comparison of the computed results with measurements in the form of shaft torque, root moments, spanwise force distributions, and pressure distributions are shown. The good agreement documents the feasibility of 3D CFD computations in connection with prediction of the performance of new rotors. Additionally it is shown how CFD computations can be used to determine the three dimensional effects in rotor flows.


Author(s):  
Qiangqiang Huang ◽  
Xinqian Zheng ◽  
Aolin Wang

Air often flows into compressors with inlet prewhirl, because it will obtain a circumferential component of velocity via inlet distortion or swirl generators such as inlet guide vanes. A lot of research has shown that inlet prewhirl does influence the characteristics of components, but the change of the matching relation between the components caused by inlet prewhirl is still unclear. This paper investigates the influence of inlet prewhirl on the matching of the impeller and the diffuser and proposes a flow control method to cure mismatching. The approach combines steady three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations with theoretical analysis and modeling. The result shows that a compressor whose impeller and diffuser match well at zero prewhirl will go to mismatching at non-zero prewhirl. The diffuser throat gets too large to match the impeller at positive prewhirl and gets too small for matching at negative prewhirl. The choking mass flow of the impeller is more sensitive to inlet prewhirl than that of the diffuser, which is the main reason for the mismatching. To cure the mismatching via adjusting the diffuser vanes stagger angle, a one-dimensional method based on incidence matching has been proposed to yield a control schedule for adjusting the diffuser. The optimal stagger angle predicted by analytical method has good agreement with that predicted by computational fluid dynamics (CFD). The compressor is able to operate efficiently in a much broader flow range with the control schedule. The flow range, where the efficiency is above 80%, of the datum compressor and the compressor only employing inlet prewhirl and no control are just 25.3% and 31.8%, respectively. For the compressor following the control schedule, the flow range is improved up to 46.5%. This paper also provides the perspective of components matching to think about inlet distortion.


1999 ◽  
Vol 121 (1) ◽  
pp. 198-204 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Laura L. Pauley

The Rayleigh-Plesset bubble dynamics equation coupled with the bubble motion equation developed by Johnson and Hsieh was applied to study the real flow effects on the prediction of cavitation inception in tip vortex flows. A three-dimensional steady-state tip vortex flow obtained from a Reynolds-Averaged Navier-Stokes computation was used as a prescribed flow field through which the bubble was passively convected. A “window of opportunity” through which a candidate bubble must pass in order to be drawn into the tip-vortex core and cavitate was determined for different initial bubble sizes. It was found that bubbles with larger initial size can be entrained into the tip-vortex core from a larger window size and also had a higher cavitation inception number.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Alessandro Armellini ◽  
Filippo Coletti ◽  
Tony Arts ◽  
Christophe Scholtes

The present contribution addresses the aerothermal, experimental, and computational studies of a trapezoidal cross-sectional model simulating a trailing edge cooling cavity with one rib-roughened wall. The flow is fed through tilted slots on one side wall and exits through straight slots on the opposite side wall. The flow field aerodynamics is investigated in Part I of the paper. The reference Reynolds number is defined at the entrance of the test section and set at 67,500 for all the experiments. A qualitative flow model is deduced from surface-streamline flow visualizations. Two-dimensional particle image velocimetry measurements are performed in several planes around midspan of the channel and recombined to visualize and quantify three-dimensional flow features. The crossing-jets issued from the tilted slots are characterized and the jet-rib interaction is analyzed. Attention is drawn to the motion of the flow deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained from the finite volume Reynolds-averaged Navier–Stokes solver, CEDRE.


1994 ◽  
Vol 116 (1) ◽  
pp. 14-22 ◽  
Author(s):  
M. G. Dunn ◽  
J. Kim ◽  
K. C. Civinskas ◽  
R. J. Boyle

Time-averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row and the first-stage blade row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. These measurements were made at 10, 50, and 90 percent span on both the pressure and suction surfaces of the component. Stanton-number distributions are also reported for the second-stage vane at 50 percent span. A shock tube is used as a short-duration source of heated and pressurized air to which the turbine is subjected. Platinum thin-film gages are used to obtain the heat-flux measurements and miniature silicone-diaphragm pressure transducers are used to obtain the surface pressure measurements. The first-stage vane Stanton number distributions are compared with predictions obtained using a quasi-three dimensional Navier–Stokes solution and a version of STAN5. This same N–S technique was also used to obtain predictions for the first blade and the second vane.


Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.


2014 ◽  
Vol 6 ◽  
pp. 272316 ◽  
Author(s):  
Zhifeng Zhu

Velocity field around a ship cavitating propeller is investigated based on the viscous multiphase flow theory. Using a hybrid grid, the unsteady Navier-stokes (N-S) and the bubble dynamics equations are solved in this paper to predict the velocity in a propeller wake and the vapor volume fraction on the back side of propeller blade for a uniform inflow. Compared with experimental results, the numerical predictions of cavitation and axial velocity coincide with the measured data. The evolution of tip vortex is shown, and the interaction between the tip vortex of the current blade and the wake of the next one occurs in the far propeller wake. The frequency of velocity signals changes from shaft rate to blade rate. The phenomena reflect the instability of propeller wake.


2014 ◽  
Vol 694 ◽  
pp. 187-192
Author(s):  
Jin Xiang Wu ◽  
Jian Sun ◽  
Xiang Gou ◽  
Lian Sheng Liu

The three-dimensional coupled explicit Reynolds Averaged Navier–Stokes (RANS) equations and the two equation shear-stress transport k-w (SST k-w) model has been employed to numerically simulate the cold flow field in a special-shaped cavity-based supersonic combustor. In a cross-section shaped rectangular, hypersonic inlet with airflow at Mach 2.0 chamber, shock structures and flow characteristics of a herringbone-shaped boss and a herringbone-shaped cavity models were discussed, respectively. The results indicate: Firstly, according to the similarities of bevel-cutting shock characteristics between the boss case and the cavity case, the boss structure can serve as an ideal alternative model for shear-layer. Secondly, the eddies within cavity are composed of herringbone-spanwise vortexes, columnar vortices in the front and main-spanwise vortexes in the rear, featuring tilting, twisting and stretching. Thirdly, the simulated bottom-flow of cavity is in good agreement with experimental result, while the reverse flow-entrainment resulting from herringbone geometry and pressure gradient. However, the herringbone-shaped cavity has a better performance in fuel-mixing.


Author(s):  
Ali Farokhi Nejad ◽  
Giorgio Chiandussi ◽  
Vincenzo Solimine ◽  
Andrea Serra

The synchronizer mechanism represents the essential component in manual, automatic manual, and dual-clutch transmissions. This paper describes a multibody dynamic model for analysis of a synchronizer mechanism subjected to different operational conditions. The three-dimensional multi-dynamic model is developed to predict the dynamic response of synchronizer, especially for calculation of synchronization time. For the purpose of validation, three different synchronizers (single-cone, double-cone, and triple-cone synchronizers) were used on the test rig machine. For the purpose of synchronizing time estimation, an analytical formulation is proposed. The results of the analytical and multibody dynamic analyses were compared with the experimental data, showing a good agreement. The results of analytical and numerical approaches show that the predicted time of synchronization is more precise than previous works. A sensitivity analysis was performed on the single-cone synchronizer, and the effect of tolerance dimension on the dynamic behavior of the synchronizer was reported.


Sign in / Sign up

Export Citation Format

Share Document